Câu hỏi:

12/07/2024 461

b) Trên cung nhỏ CD lấy điểm K. Gọi giao điểm của KA,KB với DC lần lượt là M và N. Tìm giá trị lớn nhất của MN khi K di động trên cung nhỏ CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có:  MKN^=90° (góc nội tiếp chắn nửa đường tròn)  KMN^+KNM^=90°.        (1)

Trong tam giác vuông EMA có:  EAM^+EMA^=90°.                    (2)

Mà  KMN^=EMA^ (đối đỉnh);  KMN^=BNF^ (đối đỉnh).                  (3)

Từ (1), (2) và (3) suy ra  EAM^=BNF^.

Xét  ΔAEM và  ΔNFB có:  AEM^=BFC^=90° (giả thiết)

                              EAM^=BNF^ (chứng minh trên).

  ΔAEM~ΔNFBg.gEMFB=AENFEM.NF=AE.BF (không đổi).

Lại có:  MN=EFEM+NF.

Do đó MN lớn nhất khi và chỉ khi EM+NF nhỏ nhất.

Áp dụng bất đẳng thức Cô-si ta có:  EM+NF2EM.NF=2AE.BF.

Đẳng thức xảy ra khi  EM=FN=AE.BF.

Vậy giá trị lớn nhất của MN bằng  EF2AE.BF.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Tam giác ABC phải có thêm điều kiện gì thì tứ giác DECB là hình thang cân.

Xem đáp án » 12/07/2024 1,688

Câu 2:

Trong tam giác ABC, đường phân giác của  BAC^ cắt cạnh BC tại D. Giả sử (T) là đường tròn tiếp xúc với BC tại  và đi qua điểm D. Gọi M là giao điểm thứ hai của (T) và AC, P là giao điểm thứ hai của (T) và BM, E là giao điểm của AP và BC.

a) Chứng minh rằng  EAB^=MBC^.

Xem đáp án » 12/07/2024 1,350

Câu 3:

Cho bốn điểm A,D,C,B theo thứ tự đó nằm trên đường tròn tâm O đường kính AB=2R. Gọi E và F theo thứ tự là hình chiếu vuông góc của A,B trên đường thẳng CDA. Tia AD cắt tia BC tại I. Biết  AE+BF=R3.

a) Tính số đo  AIB^.

Xem đáp án » 12/07/2024 503

Câu 4:

b) Chứng minh hệ thức  BE2=EP.EA.

 

Xem đáp án » 31/08/2022 436

Câu 5:

c) Tứ giác AMIN là hình thoi.

Xem đáp án » 31/08/2022 431

Câu 6:

Cho tam giác ABC nội tiếp trong đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:

a) Tam giác AMN là tam giác cân.

Xem đáp án » 12/07/2024 424
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua