Câu hỏi:
13/07/2024 4,028
Cho điểm M thuộc cung nhỏ BC của đường tròn (O). Một đường thẳng d ở ngoài (O) và vuông góc với đường thẳng OM; đường thẳng CM,BM cắt d lần lượt tại D, E. Chứng minh rằng B , C , D , E cùng thuộc một đường tròn.
Cho điểm M thuộc cung nhỏ BC của đường tròn (O). Một đường thẳng d ở ngoài (O) và vuông góc với đường thẳng OM; đường thẳng CM,BM cắt d lần lượt tại D, E. Chứng minh rằng B , C , D , E cùng thuộc một đường tròn.
Quảng cáo
Trả lời:

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90 nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.
Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.
Vậy B , C , D , E cùng thuộc một đường tròn.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có BEC = 90, BDC = 90 (giả thiết) và hai đỉnh E, D cùng nhìn cạnh BC. Suy ra tứ giác BEDC nội tiếp trong một đường tròn.
Lời giải
Tứ giác HEBF nội tiếp (do BEH = BFH = 90)
=> BFE = BHE (cùng chắn BE).
Tứ giác CDHF nội tiếp (do CDH = CFH = 90) => CFD = CHD.
Mà BHE = CHD nên BFE = CFD.
Mặt khác: BFE +EFA = 90 và CFD + DFA = 90. Do đó EFA = DFA. Vậy FH là tia phân giác của góc EFD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.