Câu hỏi:

19/08/2025 3,589 Lưu

Cho tam giác ABC có ba góc nhọn ( AB < AC), các đường AF, BD, CE cắt nhau tại H.

a) Chứng minh tứ giác BEDC nội tiếp được trong một đường tròn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
a) Chứng minh tứ giác BEDC nội tiếp được trong một đường tròn. (ảnh 1)

Ta có BEC = 90°, BDC = 90° (giả thiết) và hai đỉnh E, D cùng nhìn cạnh BC. Suy ra tứ giác BEDC nội tiếp trong một đường tròn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng B , C , D , E cùng thuộc một đường tròn. (ảnh 1)

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90° nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.

Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.

Vậy B , C , D , E cùng thuộc một đường tròn.

Lời giải

a) Chứng minh AHCP là tứ giác nội tiếp. (ảnh 1)

Giả sử các đường cao của tam giác là AK, CI. Để chứng minh AHCP nội tiếp ta sẽ chứng minh AHC + APC = 120°.

Ta có: AHC = IHK  (đối đỉnh),

APC = AMC = ABC (do tính đối xứng và góc nội tiếp cùng chắn một cung).

Lại có tứ giác BIHK là tứ giác nội tiếp nên ABC + IHK = 180° => AHC + APC = 180°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP