Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tứ giác HEBF nội tiếp (do BEH = BFH = 90°)

=> BFE = BHE (cùng chắn BE).

Tứ giác CDHF nội tiếp (do CDH = CFH = 90°) => CFD = CHD.

Mà BHE = CHD nên BFE = CFD.

Mặt khác: BFE +EFA = 90° và CFD + DFA = 90°. Do đó EFA = DFA. Vậy FH là tia phân giác của góc EFD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng B , C , D , E cùng thuộc một đường tròn. (ảnh 1)

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90° nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.

Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.

Vậy B , C , D , E cùng thuộc một đường tròn.

Lời giải

a) Chứng minh tứ giác BEDC nội tiếp được trong một đường tròn. (ảnh 1)

Ta có BEC = 90°, BDC = 90° (giả thiết) và hai đỉnh E, D cùng nhìn cạnh BC. Suy ra tứ giác BEDC nội tiếp trong một đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP