Câu hỏi:
11/07/2024 276b) Đồ thị của hàm số y = f(x) đi qua ba điểm có toa độ là (0; –2), (2; 6) và (3; 13);
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Ta có:
Đồ thị của hàm số đi qua điểm có toạ độ là (0; – 2) nên –2 = c (1)
Đồ thị của hàm số đi qua ba điểm có toạ độ là (2; 6) nên 6 = 4a + 2b + c (2)
Đồ thị của hàm số đi qua ba điểm có toạ độ là (3; 13) nên 13 = 9a + 3b + c (3).
Thay (1) vào phương trình (2) và (3) ta có:
Do đó f (x) = x2 + 2x – 2.
Xét f ( x ) = x2 + 2x – 2 có ∆ = 22 – 4.( –2 ).1 = 12 nên f ( x ) có hai nghiệm phân biệt lần lượt là:
x1 =.
x2 =
Như vậy, f (x) có a = 1 > 0, ∆ > 0 và có hai nghiệm x1 = –1 + , x2 = –1 – nên:
f (x) âm trong khoảng ( –1 – ; –1 + ).
f (x) dương trong khoảng (– ; –1 – ) và ( –1 + ; + ).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm các giá trị của tham số m để:
a) là tam thức bậc hai không đổi dấu trên ℝ,
Câu 2:
Tìm các giá trị của tham số m để:
a) là một tam thức bậc hai có một nghiệm duy nhất;
về câu hỏi!