Câu hỏi:

14/09/2022 240

Từ tất cả hình chữ nhật với chu vi đã cho, thì hình vuông có diện tích lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt 2a là chu vi đã cho của những hình chữ nhật. Khi đó tổng x+y của hai cạnh hình chữ nhật x và y là một đại lượng không đổi a, nhưng diện tích xy là một biến số, mà ta muốn có giá trị lớn nhất.

Trung bình cộng của hai đại lượng là m=x+y2.

Ta kí hiệu d=xy2, ta nhận được x=m+d,y=md.

Vì vậy: xy=(m+d)(md)=m2d2=(x+y)24d2.

d2 là một số dương nên ta có: xyx+y2, ở đây dấu bằng thì xảy ra khi d=0 hoặc là x=y=m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nếu ta ký hiệu y là thể tích của hình hộp chữ nhật, còn x là đương cao của hộp, thì: y=(a2x)2x.

Ta có: y=14(a2x).(a2x).4x

14a2x+a2x+4x33

=2a327

Dấu “=” xảy ra khi x=a6.

Kết luận: thể tích hình hộp lớn nhất là 2a327 khi x=a6.

Lời giải

Người ta đào một con mương với thiết diện cắt ngang là một hình thang cân, đáy và cạnh bên (ảnh 1)
Người ta đào một con mương với thiết diện cắt ngang là một hình thang cân, đáy và cạnh bên có cùng

Đặt x là độ dài của hình chiếu cạnh bên hình thang xuống đáy lớn (bề rộng mương). Khi đó:

S=12(a+a+x+x).a2x2=(a+x)a2x2

Hay: S2=(a+x)3(ax)

Hoặc: S2=13(a+x)(a+x)(a+x)(3a3x),0<x<a.

Áp dụng hệ quả 3 ở trên ta có:

13(a+x)(a+x)(a+x)(3a3x)

13a+x+a+x+a+x+3a3x44

=133a24=2716a4

Vậy Smax=334a2 khi x=a2.

Lúc này, cạnh lớn của hình thang có chiều dài là 2a, góc nhọn của nó là 600.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP