Câu hỏi:

12/07/2024 515

Có hai điểm dân cư cùng phía bên cạnh một dòng sông. Người ta muốn xây dựng một trạm cung cấp nước lấy từ dòng sông và qua xử lí cung cấp cho hai điểm dân cư nói trên. Vậy phải đặt trạm xử lí nước tại điểm nào trên bờ sông để độ dài đường ống dẫn nước từ đó tới hai điểm dân cư là nhỏ nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Có hai điểm dân cư cùng phía bên cạnh một dòng sông. Người ta muốn xây dựng một trạm (ảnh 1)

Trong thực tế đường ngắn nhất giữa hai điểm dân cư là đường thẳng nối hai điểm đó. Nhưng bài toán ra là đường ống nối hai điểm dân cư với một điểm xử lí nước trên bờ sông. Vậy đường ống phải là đường gấp khúc. Giả sử hai điểm dân cư ở hai phía khác nhau của bờ sông thì bài toán trở nên quá dễ, vì đường nối hai điểm có cắt dòng sông và điểm cắt đó chính là trạm xử lí nước. Bài toán của chúng ta là hai điểm dân cư cùng một phía bờ sông, nên chúng ta giả sử một điểm dân cư được chuyển sang bên kia bờ sông. Câu hỏi được đặt ra là điểm dân cư được chuyển sang bên kia sông ở vị trí nào là thích hợp nhất? Để đảm bảo tính chất của điểm dân cư ta chuyển sang phải có khoảng cách từ đó đến dòng sông là như nhau. Hay nói cách khác ta lấy điểm đối xứng của một điểm dân cư. Gọi A, B là hai điểm dân cư. Điểm A' đối xứng với B qua dòng sông. Đường nối A'B cắt bờ sông ở D. Điểm D chính là nơi đặt trạm xử lí nước.

Thật vậy với mọi điểm C khác D, ta có:

CA+CB=CA'+CB>A'B=DA'+DB=DA+DB

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường quốc lộ và đường ống dân dầu cắt nhau một góc nhỏ hơn 45 độ, trong góc này có một (ảnh 1)

Ta thấy điểm dân cư A và điểm lối thoát ra đường quốc lộ nằm cùng một phía đường ống dẫn đầu. Tương tự như ví dụ 1, ta lấy điểm B đối xứng với điểm A qua đường ống dẫn dầu.

Từ điểm B hạ đường vuông góc xuống đường quốc lộ, đường ta vừa hạ sẽ cắt đường ống dẫn dầu tại D, có chân đường vuông góc tại C. Điểm D chính là nơi ta xây trạm cung cấp xăng và đoạn đường AD+DC là đoạn đường ngắn nhất ta phải mở.

Thật vậy, gọi E là điểm bất kì trên đường ống dẫn dầu, C' là điểm bất kì trên đường quốc lộ. Ta có:

AE+EC'=BE+EC'BC'BC=BD+DC=AD+DC

(do BC là đoạn đường ngắn nhất từ B đến đường quốc lộ).

Lời giải

Cho tam giác nhọn ABC. Hãy nội tiếp trong tam giác ABC một tam giác có chu vi bé nhất. (ảnh 1)

Xét những tam giác nội tiếp PMN có đỉnh P cố định trên đáy BC.

Lấy P1,P2 đối xứng của P qua AB và AC, P1,P2 cắt AB, AC tại N và M. PMN là tam giác cần dựng vì chu vi tam giác PMN bằng PN+NM+MP=P1P2<P1N'+N'M'+M'P2 bằng
chu vi tam giác PM'N.

Như vậy, chúng ta cần phải tìm vị trí P để P1P2 là bé nhất.

Do P1P2 là đáy tam giác cân AP1P2 P1AP2^=2BAC^ không đổi. Suy ra P1P2 đạt giá trị nhỏ nhất khi cạnh bên AP1=AP2=AP bé nhất khi APBC. Hay AP là đường cao của tam giác ABC.

Tương tự lập luận trên lấy điểm N thuộc AB cố định hay M thuộc AC cố định ta đi đến kết luận chu vi tam giác ABC bé nhất khi CN và BM là các đường cao của tam giác ABC.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay