Câu hỏi:

12/07/2024 240

Trên một mảnh đất hình thang vuông ABCD người ta xây dựng một sân vận động hình chữ nhật AEFD và 3 ngôi nhà. Nhà bảo vệ C, nhà ban quản lý sân B, nhà tạm nghỉ và thay trang phục P. Kèm theo đó người ta xây dựng hai cửa chính Q, H và cùng một cửa phụ K. Bạn hãy giúp người thiết kế sân tìm vị trí P, Q, H, K sao cho trước và sau mỗi trận thi đấu, người bảo vệ có thể đi theo con đường CHKQBPC ngắn nhất để làm nhiệm vụ. Theo đó người ta cho xây các cửa P,H,Q,K và con đường BPC. Sơ đồ mảnh đất và vị trí cố định của B, C và các vị trí cần được xác định P,Q,H,K có dạng như hình vẽ.

Trên một mảnh đất hình thang vuông ABCD người ta xây dựng một sân vận động hình chữ nhật (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trên một mảnh đất hình thang vuông ABCD người ta xây dựng một sân vận động hình chữ nhật (ảnh 2)

Ta giải bài toán này như sau: Con đường CHKQBPC, sẽ ngắn nhất nếu ta tìm được P,Q,H,K S1=PB+PC nhỏ nhất và S2=CH+HK+KQ+QB nhỏ nhất.

Ta xác định các vị trí P,Q,H,K như sau:

- Gọi C' là điểm đối xứng với C qua EF; gọi C'' là điểm đối xứng với C qua AD.

- Gọi B là giao điểm của BC' và EF; K là giao điểm của BC'' và EF; H là giao điểm của CK và EF.

Việc chứng minh điểm P dựng như trên để S1 nhỏ nhất đã trình bày trong ví dụ 1. Việc dựng điểm K như trên, cũng như theo ví dụ 1 đã nêu thì mới đảm bảo cho S=BK+KC nhỏ nhất.

Ta sẽ chứng minh các điểm K,Q,H dựng như vậy thoả mãn S2=CH+HK+KQ+QB nhỏ nhất.

Thật vậy: xét các điểm K1,Q1,H1 bất kỳ lần lượt thuộc AD,EF. Ta nhận thấy:

CH1+H1K1CK1K1Q1+Q1BK1BCH1+H1K1+K1Q1+Q1BCK1+K1B

Theo cách dựng điểm K thì CK1+K1BKB+KC

Từ đó suy ra: CH1+H1K1+K1Q1+Q1BKB+KC

Dấu “=” trong CH1+H1K1+K1Q1+Q1BKB+KC 
xảy ra khi và chỉ khi các dấu “=” trong

CH1+H1K1CK1,K1Q1+Q1BK1B,CH1+H1K1+K1Q1+Q1BCK1+K1B,

CK1+K1BKB+KC đồng thời xảy ra. Như vậy K,Q,H dựng như hình trên đảm bảo cho ta S2 là nhỏ nhất.

Tóm lại: S1+S2=CH+HK+KQ+QB+BP+PC, với cách dựng P,Q,H,K như trên thì S1+S2 nhỏ nhất. Do các điểm P, K là duy nhất, nên vị trí các điểm P, Q, H, K như trên là duy nhất. Để ý là mảnh đất ABCD là hình thang vuông, sân vận động AEFD là hình chữ nhật nên ta chứng minh được các vị trí P, Q, H, K xác định như trên là thoả mãn các yêu cầu thực tế của bài toán. (Cụ thể là: Q,P,H nằm trên cạnh EF; K nằm trên cạnh AD của hình chữ nhật ABCD và P nằm giữa Q và H).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường quốc lộ và đường ống dân dầu cắt nhau một góc nhỏ hơn 45 độ, trong góc này có một (ảnh 1)

Ta thấy điểm dân cư A và điểm lối thoát ra đường quốc lộ nằm cùng một phía đường ống dẫn đầu. Tương tự như ví dụ 1, ta lấy điểm B đối xứng với điểm A qua đường ống dẫn dầu.

Từ điểm B hạ đường vuông góc xuống đường quốc lộ, đường ta vừa hạ sẽ cắt đường ống dẫn dầu tại D, có chân đường vuông góc tại C. Điểm D chính là nơi ta xây trạm cung cấp xăng và đoạn đường AD+DC là đoạn đường ngắn nhất ta phải mở.

Thật vậy, gọi E là điểm bất kì trên đường ống dẫn dầu, C' là điểm bất kì trên đường quốc lộ. Ta có:

AE+EC'=BE+EC'BC'BC=BD+DC=AD+DC

(do BC là đoạn đường ngắn nhất từ B đến đường quốc lộ).

Lời giải

Cho tam giác nhọn ABC. Hãy nội tiếp trong tam giác ABC một tam giác có chu vi bé nhất. (ảnh 1)

Xét những tam giác nội tiếp PMN có đỉnh P cố định trên đáy BC.

Lấy P1,P2 đối xứng của P qua AB và AC, P1,P2 cắt AB, AC tại N và M. PMN là tam giác cần dựng vì chu vi tam giác PMN bằng PN+NM+MP=P1P2<P1N'+N'M'+M'P2 bằng
chu vi tam giác PM'N.

Như vậy, chúng ta cần phải tìm vị trí P để P1P2 là bé nhất.

Do P1P2 là đáy tam giác cân AP1P2 P1AP2^=2BAC^ không đổi. Suy ra P1P2 đạt giá trị nhỏ nhất khi cạnh bên AP1=AP2=AP bé nhất khi APBC. Hay AP là đường cao của tam giác ABC.

Tương tự lập luận trên lấy điểm N thuộc AB cố định hay M thuộc AC cố định ta đi đến kết luận chu vi tam giác ABC bé nhất khi CN và BM là các đường cao của tam giác ABC.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay