Câu hỏi:

12/07/2024 1,916

Một thửa ruộng hình tam giác có diện tích 180m2. Tính chiều dài cạnh đáy thửa ruộng, biết rằng nếu tăng cạnh đáy thêm 4m và chiều cao giảm đi 1m thì diện tích không đổi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x (m) là cạnh đáy hình tam giác của thửa ruộng.

y (m) là chiều cao của hình tam giác của thửa ruộng.

Điều kiện: x>0y>0.

Diện tích thửa ruộng lúc chưa tăng là: S=12xy (m2).

Theo bài toán ta có: 12xy=180xy=360              (1)

Nếu tăng cạnh đáy thêm 4m và chiều cao giảm đi 1m thì ta có diện tích của thửa ruộng lúc này là:

                        S=12(x+4)(y1) (m2)

Do diện tích không đổi nên:

                        12(x+4)(y1)=180(x+4)(y1)=360            (2)

Từ (1) và (2) ta có hệ phương trình: xy=360(x+4)(y1)=360

Giải hệ phương trình này và đối chiếu với điều kiện ta có nghiệm của hệ phương trình là: x=36y=10.

Vậy cạnh đáy của thửa ruộng ban đầu là 36m và chiều cao cạnh đáy của thửa ruộng ban đầu: 10m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y lần lượt là chiều rộng và chiều dài của mảnh đất.

Điều kiện: x>0y>0.

Vì chu vi của khu vườn là 280m nên ta có phương trình:

                        2x+2y=280x+y=140                        (1)

Người ta làm một lối đi xung quanh vườn (thuộc đất của vườn) rộng 2m. Nên chiều rộng và chiều dài còn lại là: x-2 và y-2.

Diện tích mảnh đất khi đã làm lối đi là: (x2)(y2)=4524                                  (2)

Từ (1) và (2) ta có hệ phương trình: x+y=140(x2)(y2)=4524

Giải hệ phương trình này và đối chiếu điều kiện của mảnh đất thấy nghiệm là: x=60y=80.

Vậy chiều rộng của mảnh đất là 60m và chiều dài của mảnh đất là 80m.

Lời giải

Gọi x, y lần lượt là chiều rộng và chiều dài của thửa ruộng.

Điều kiện: x>0y>0.

Diện tích thửa ruộng là xy (m2).

Nếu tăng chiều dài thêm 2m và chiều rộng 3m thì diện tích tăng 100m2 nên ta có phương trình:

(x+3)(y+2)=xy+100                   (1)

Nếu cùng giảm chiều dài và chiều rộng 2m thì diện tích giảm 68m2 nên ta có phương trình:

(x2)(y2)=xy68                      (2)

Từ (1) và (2) ta có hệ phương trình: (x+3)(y+2)=xy+100(x2)(y2)=xy68.

Giải hệ phương trình này và đối chiếu điều kiện ta được x=14y=22 thoả mãn.

Vậy thửa ruộng có chiều rộng là 14m và chiều dài là 22m.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay