Một ô tô C, một xe đạp B và điểm cố định A đang ở vị trí tạo thành tam giác vuông tại B. Ô tô và xe đạp khởi hành cùng một lúc đi về phía A theo các cạnh của tam giác ABC. Sau khi ô tô đi được 25km thì tam giác tạo bởi điểm A, ô tô C, xe đạp B là tam giác đều. Khi ô tô đến A thì xe đạp còn phải đi 12km nữa mới đến A. Tìm khoảng cách ban đầu của ô tô và xe đạp.
Một ô tô C, một xe đạp B và điểm cố định A đang ở vị trí tạo thành tam giác vuông tại B. Ô tô và xe đạp khởi hành cùng một lúc đi về phía A theo các cạnh của tam giác ABC. Sau khi ô tô đi được 25km thì tam giác tạo bởi điểm A, ô tô C, xe đạp B là tam giác đều. Khi ô tô đến A thì xe đạp còn phải đi 12km nữa mới đến A. Tìm khoảng cách ban đầu của ô tô và xe đạp.
Quảng cáo
Trả lời:

Góc A của tam giác vuông ABC với góc A là góc của tam giác đều là một góc.
Vậy .
Giả sử lúc đầu (km). Vậy (km).
Ta có: .
Gọi là vận tốc ô tô; là vận tốc xe đạp. Ta có:
Hệ phương trình này đưa đến phương trình
, .
Giải phương trình ta được x = 40.
Vì (km).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi M là vị trí xe mô tô sau khi khởi hành t (h) và
N là vị trí xe đạp sau khi khởi hành t (h).
Ta có: .
.
Sử dụng định lí Pythagore, ta được:
.
Vậy MN ngắn nhất khi 3,6 (h) 3 giờ 36 phút.
Lời giải

Gọi (km/h) là vận tốc của thuyền 1,
(km/h) là vận tốc của thuyền 2.
và là vị trí của thuyền 1, 2 sau 30 phút.
và là vị trí của thuyền 1, 2 sau 15 phút nữa.
Theo giả thiết: .
Đưa đến hệ: dẫn đến .
Giải phương trình ta được (km/h) thoả mãn bài toán
Vậy vận tốc thuyền 1 là 24 (km/h) và vận tốc thuyền 2 là 18 (km/h).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.