Câu hỏi:
12/07/2024 687Tháng 5 năm 2019, nhiều đại biểu trên cả nước đã “hội quân” trên một tàu kiểm ngư rời cảng biển quốc tế Cam Ranh để bắt đầu hải trình nối tình yêu đất liền với biển đảo Trường Sa. Do thời tiết xấu, tàu kiểm ngư đã giảm 15% tốc độ so với tốc độ đã định. Giả sử tốc độ đã định của tàu kiểm ngư là x hải lí/giờ. Viết biểu thức biểu thị số hải lí mà tàu kiểm ngư đã đi với số thời gian:
a) 1 giờ;
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tốc độ thực tế tàu kiểm như đã đi bằng 100% – 15% = 85% so với tốc độ đã định và bằng 85%.x = 0,85x (hải lí/giờ).
a) Biểu thức biểu thị số hải lí mà tàu kiểm ngư đã đi trong 1 giờ là:
0,85x . 1 = 0,85x (hải lí).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một bể đang chứa 500 l nước. Người ta mở một vòi nước cho chảy vào bể đó, mỗi phút vòi nước đó chảy vào bể được 50 l nước. Viết biểu thức biểu thị lượng nước có trong bể sau khi đã mở vòi nước đó được x phút, biết rằng sau x phút bể nước đó chưa đầy.
Câu 2:
Cho đa thức A(x) = – 11x5 + 4x3 – 12x2 + 11x5 + 13x2 – 7x + 2.
a) Thu gọn và sắp xếp đa thức A(x) theo số mũ giảm dần của biến.
Câu 4:
Nhân dịp cuối năm, một cửa hàng cần thanh lí một lô hàng (gồm 100 sản phẩm cùng loại) với giá bán là x đồng/chiếc. Lần đầu cửa hàng giảm 10% so với giá bán thì bán được 15 sản phẩm, lần sau cửa hàng giảm thêm 5% nữa (so với giá đã giảm lần đầu) thì bán được hết 85 sản phẩm còn lại. Viết biểu thức biểu thị số tiền cửa hàng thu được sau khi đã bán hết 100 sản phẩm trên.
Câu 5:
Cho đa thức Q(x) = ax2 + bx + c (a ≠ 0). Chứng minh rằng nếu Q(x) nhận 1 và –1 là nghiệm thì a và c là hai số đối nhau.
Câu 6:
Một cửa hàng bán hoa sau khi tăng giá 50 nghìn đồng mỗi chậu hoa so với giá bán ban đầu là 3x (nghìn đồng) thì số tiền thu được là 3x2 + 53x + 50 (nghìn đồng). Tính số chậu hoa mà cửa hàng đã bán theo x.
Câu 7:
Cho đa thức P(x) = ax4 + bx3 + cx2 + dx + e (a ≠ 0) với a + b + c + d + e = 0. Chứng tỏ rằng x = 1 là nghiệm của đa thức P(x).
về câu hỏi!