Câu hỏi:

13/07/2024 1,716

b) Tìm tọa độ điểm P trên Δ, biết P có tung độ bằng 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Giả sử điểm P trên d có tung độ bằng 1 có tọa độ là P(x; 1).

Vì P nằm trên d nên thay y = 1 vào phương trình  ta được : x=9+8ty=54t

 x=9+8t1=54t.

 Từ phương trình 1 = 5 − 4t  t = 1.

Thay t = 1 vào phương trình x = −9 + 8t, ta được: x = −9 + 8. 1 = −1.

Vậy P = (−1; 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì d1 song song với d2: x + 3y + 2 = 0 nên d1 nhận n = (1; 3) là vectơ pháp tuyến.

Phương trình đường thẳng d1 đi qua điểm A(2; 3) và nhận n = (1; 3) là vectơ pháp tuyến là:

(x − 2) + 3(y − 3) = 0  x + 3y − 11 = 0.

Vậy phương trình đường thẳng d1 là x + 3y − 11 = 0.

Lời giải

Hai đường thẳng d1: 4x − 3y + 2 = 0 và d2: 4x − 3y + 12 = 0 đều có vectơ pháp tuyến là :n  = (4 ; −3)

Suy ra d1 và d2 song song hoặc trùng nhau.

Lấy A(0; 4) d2. Thay tọa độ của A vào d1 ta có: 4.0 – 3.4 + 2 = −10 ≠ 0 A d1.

Vậy d1 và d2 song song với nhau.

Khi đó khoảng cách từ A đến d1 chính là khoảng cách giữa hai đường thẳng d1 và d2.

Ta có d(A, d1) = |4.03.4+2|42+(3)2=105 = 2.

Vậy khoảng cách giữa hai đường thẳng d1 và d2 là 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP