Câu hỏi:

13/07/2024 16,416

Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình: (x 1)2 + (y 1)2 = 169144.

Khi người đó vung đĩa đến vị trí điểm M1712;2  thì buông đĩa (Hình 4). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm M.

Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình: (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường tròn (C): (x 1)2 + (y 1)2 = 169144 có tâm I(1; 1).

Phương trình tiếp tuyến của đường tròn (C) tại điểm M là:

(1 − 1712  )(x 1712 ) + (1 2)(y 2) = 0  512 x + y 373144  = 0.

Vậy phương trình tiếp tuyến của đường tròn (C) tại điểm M là 512 x + y 373144  = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: IM  = (x – a; y – b).

Khi đó IM = IM=(xa)2+(yb)2.

Vậy khoảng cách giữa hai điểm I(a; b) và M(x; y) trong mặt phẳng Oxy là IM = (xa)2+(yb)2.

Lời giải

Phương trình đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 có dạng: x2 + y2 2ax 2by + c = 0 với a = 1; b = 2; c = −20.

Ta có: a2 + b2 c = 12 + 22 + 20 = 25.

Đường tròn (C) có tâm I(1; 2) và bán kính R = 25 = 5.

Phương trình tiếp tuyến của (C) tại A(4; 6) là:

(1 4)(x 4) + (2 6)(y 6) = 0  −3x 4y + 36 = 0  3x + 4y 36 = 0.

Vậy phương trình tiếp tuyến của đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 tại điểm A(4; 6) là 3x + 4y 36 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP