Câu hỏi:
13/07/2024 16,416
Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình: (x − 1)2 + (y − 1)2 = .
Khi người đó vung đĩa đến vị trí điểm thì buông đĩa (Hình 4). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm M.
Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình: (x − 1)2 + (y − 1)2 = .
Khi người đó vung đĩa đến vị trí điểm thì buông đĩa (Hình 4). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm M.

Quảng cáo
Trả lời:
Đường tròn (C): (x − 1)2 + (y − 1)2 = có tâm I(1; 1).
Phương trình tiếp tuyến của đường tròn (C) tại điểm M là:
(1 − )(x − ) + (1 − 2)(y − 2) = 0 ⇔ x + y − = 0.
Vậy phương trình tiếp tuyến của đường tròn (C) tại điểm M là x + y − = 0.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: = (x – a; y – b).
Khi đó IM = .
Vậy khoảng cách giữa hai điểm I(a; b) và M(x; y) trong mặt phẳng Oxy là IM = .
Lời giải
Phương trình đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 có dạng: x2 + y2 − 2ax − 2by + c = 0 với a = 1; b = 2; c = −20.
Ta có: a2 + b2 − c = 12 + 22 + 20 = 25.
⇒ Đường tròn (C) có tâm I(1; 2) và bán kính R = = 5.
Phương trình tiếp tuyến của (C) tại A(4; 6) là:
(1 − 4)(x − 4) + (2 − 6)(y − 6) = 0 ⇔ −3x − 4y + 36 = 0 ⇔ 3x + 4y – 36 = 0.
Vậy phương trình tiếp tuyến của đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 tại điểm A(4; 6) là 3x + 4y – 36 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.