Câu hỏi:
13/07/2024 11,614Quảng cáo
Trả lời:
Gọi I(a; b) là tâm đường tròn (C).
Ta có: R = d(I; Ox) = d(I; Oy) ⇒ R = a = b ⇒ (C) có tâm I(a; a) và bán kính R = a.
⇒ Phương trình đường tròn (C) là: (x − a)2 + (y − a)2 = a2.
Ta có A(4; 2) ∈ (C) nên (4 − a)2 + (2 − a)2 = a2
⇔ 16 − 8a + a2 + 4 − 4a + a2 = a2
⇔ a2 − 12a + 20 = 0 ⇔ a = 10 hoặc a = 2
Với a = 10 thì ta có phương trình đường tròn (C): (x − 10)2 + (y − 10)2 = 100.
Với a = 2 thì ta có phương trình đường tròn (C): (x − 2)2 + (y − 2)2 = 4.
Vậy (C): (x − 10)2 + (y − 10)2 = 100 hoặc (C): (x − 2)2 + (y − 2)2 = 4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: = (x – a; y – b).
Khi đó IM = .
Vậy khoảng cách giữa hai điểm I(a; b) và M(x; y) trong mặt phẳng Oxy là IM = .
Lời giải
Phương trình đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 có dạng: x2 + y2 − 2ax − 2by + c = 0 với a = 1; b = 2; c = −20.
Ta có: a2 + b2 − c = 12 + 22 + 20 = 25.
⇒ Đường tròn (C) có tâm I(1; 2) và bán kính R = = 5.
Phương trình tiếp tuyến của (C) tại A(4; 6) là:
(1 − 4)(x − 4) + (2 − 6)(y − 6) = 0 ⇔ −3x − 4y + 36 = 0 ⇔ 3x + 4y – 36 = 0.
Vậy phương trình tiếp tuyến của đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 tại điểm A(4; 6) là 3x + 4y – 36 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.