Câu hỏi:
28/10/2022 261Cho tam giác MNP có \(\widehat M = 63^\circ ,\widehat N = 48^\circ \). Vẽ trực tâm O của tam giác MNP. Số đo góc MON là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi giao điểm của NO và PM là A, giao điểm của MO và PN là B
Vì O là trực tâm tam giác MNP nên NA ⊥ PM, MB ⊥ PN.
Vì DMNA vuông tại A nên \(\widehat {ANM} + \widehat {AMN} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {ANM} = 90^\circ - \widehat {AMN} = 90^\circ - 63^\circ = 27^\circ \).
Vì DMNB vuông tại B nên \(\widehat {BNM} + \widehat {BMN} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {BMN} = 90^\circ - \widehat {BNM} = 90^\circ - 48^\circ = 42^\circ \).
Xét DOMN có \(\widehat {ONM} + \widehat {OMN} + \widehat {MON} = 180^\circ \) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {MON} = 180^\circ - \widehat {ONM} - \widehat {OMN} = 180^\circ - 27^\circ - 42^\circ = 111^\circ \).
Vậy ta chọn phương án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
• Xét ∆DBC có CA, BP là hai đường cao cắt nhau tại M nên M là trực tâm của ∆DBC.
Do đó phương án A đúng.
• Vì M là trực tâm của ∆DBC nên DM ⊥ BC.
Do đó phương án B đúng.
• Ta có DM ⊥ BC (chứng minh trên).
Mà MN ⊥ BC (giả thiết).
Suy ra D, M, N thẳng hàng.
Do đó phương án C đúng.
• Ta có:
+) D ∈ MN (do D, M, N thẳng hàng);
+) D ∈ AB (giả thiết);
+) D ∈ CP (giả thiết).
Suy ra AB, MN, CP cùng đồng quy tại điểm D.
Do đó phương án D sai.
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
• Xét ΔBHM và ∆BHC có:
BH là cạnh chung,
\(\widehat {ABH} = \widehat {CBH}\) (do BH là tia phân giác của góc ABC),
BM = BC (giả thiết)
Do đó ΔBHM = ∆BHC (c.g.c)
Suy ra MH = HC (hai cạnh tương ứng), nên C là khẳng định đúng.
• Vì BM = BC và HM = HC nên BH là đường trung trực của MC.
Do đó BH ⊥ MC hay BH là đường cao của tam giác MBC.
Khi đó A là khẳng định đúng.
• Xét DBMC có hai đường cao BH và CA cắt nhau tại H nên H là trực tâm tam giác BMC.
Do đó MH ⊥ BC nên khẳng định B là đúng.
Vậy ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
Bộ 15 đề thi Học kì 2 Toán 7 có đáp án (Mới nhất) - đề 2