Câu hỏi:
28/10/2022 1,933Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
• Xét ∆DBC có CA, BP là hai đường cao cắt nhau tại M nên M là trực tâm của ∆DBC.
Do đó phương án A đúng.
• Vì M là trực tâm của ∆DBC nên DM ⊥ BC.
Do đó phương án B đúng.
• Ta có DM ⊥ BC (chứng minh trên).
Mà MN ⊥ BC (giả thiết).
Suy ra D, M, N thẳng hàng.
Do đó phương án C đúng.
• Ta có:
+) D ∈ MN (do D, M, N thẳng hàng);
+) D ∈ AB (giả thiết);
+) D ∈ CP (giả thiết).
Suy ra AB, MN, CP cùng đồng quy tại điểm D.
Do đó phương án D sai.
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
• Xét ΔBHM và ∆BHC có:
BH là cạnh chung,
\(\widehat {ABH} = \widehat {CBH}\) (do BH là tia phân giác của góc ABC),
BM = BC (giả thiết)
Do đó ΔBHM = ∆BHC (c.g.c)
Suy ra MH = HC (hai cạnh tương ứng), nên C là khẳng định đúng.
• Vì BM = BC và HM = HC nên BH là đường trung trực của MC.
Do đó BH ⊥ MC hay BH là đường cao của tam giác MBC.
Khi đó A là khẳng định đúng.
• Xét DBMC có hai đường cao BH và CA cắt nhau tại H nên H là trực tâm tam giác BMC.
Do đó MH ⊥ BC nên khẳng định B là đúng.
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi M là trung điểm của IK.
• Xét DHIM và DHKM có:
HI = HK (do DIHK đều),
HM và cạnh chung,
IM = KM (do M là trung điểm của IK).
Do đó DHIM = DHKM (c.c.c).
Suy ra \(\widehat {HMI} = \widehat {HMK}\) (hai góc tương ứng).
Mà \(\widehat {HMI} + \widehat {HMK} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {HMI} = \widehat {HMK} = \frac{{180^\circ }}{2} = 90^\circ \) hay HG ⊥ IK.
Chứng minh tương tự ta cũng có IG ⊥ HK và KG ⊥ IH.
• Xét DHIG có HK ⊥ IG, IK ⊥ HG, KG ⊥ HI.
Nên HK, IK, KG là ba đường cao của tam giác HIG.
Mà HK, IK, KG cắt nhau tại K.
Suy ra K là trực tâm tam giác GIH.
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
Bộ 15 đề thi Học kì 2 Toán 7 có đáp án (Mới nhất) - đề 2