Câu hỏi:
30/10/2022 649Một con đường quốc lộ có vị trí với hai điểm dân cư A và B như hình vẽ dưới đây.
Hãy tìm trên đường quốc lộ đó một địa điểm C để xây dựng trạm y tế sao cho trạm y tế cách đều hai điểm dân cư A và B.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Vì trạm y tế C cách đều hai khu dân cư A và B.
Nên C thuộc đường trung trực d của đoạn thẳng AB nối hai khu dân cư.
Mà C nằm trên đường quốc lộ nên C là giao điểm của đường quốc lộ và đường trung trực của đoạn thẳng nối hai khu dân cư.
Do đó để xây dựng trạm y tế ở bên đường cách đều hai điểm dân cư thì trạm y tế đó phải là giao điểm giữa con đường quốc lộ và đường trung trực của đoạn thẳng AB nối hai khu dân cư.
Vậy ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Theo bất đẳng thức ta có:
BC – AB < AC < BC + AC
Hay 30 – 18 < AC < 30 + 18
Suy ra 12 < AC < 48
Nếu đặt ở khu vực A một thiết bị phát wifi đảm bảo cả hai khu vực B và C đều nhận được tín hiệu thì bán kính hoạt động cần lớn hơn khoảng cách AB và AC.
Do đó trong các bán kính hoạt động của thiết bị phát wifi được nêu ở các phương án thì bán kính hợp lí là 48 m.
Ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
• Ta xét (I):
Vì G là trọng tâm của ∆ABC nên ta có \(GB = \frac{2}{3}BE\) và \(GC = \frac{2}{3}CF\).
∆GBC có GB + GC > BC (bất đẳng thức tam giác).
Suy ra \(\frac{2}{3}BE + \frac{2}{3}CF > BC\).
Hay \(\frac{2}{3}\left( {BE + CF} \right) > BC\).
Do đó \(BE + CF > \frac{3}{2}BC\) (1).
Chứng minh tương tự ta được:
+) \(AD + BE > \frac{3}{2}AB\) (2).
+) \(AD + CF > \frac{3}{2}AC\) (3).
Lấy (1) + (2) + (3) vế theo vế, ta được:
\(2AD + 2BE + 2CF > \frac{3}{2}AB + \frac{3}{2}BC + \frac{3}{2}AC\).
Suy ra \(2\left( {AD + BE + CF} \right) > \frac{3}{2}\left( {AB + BC + AC} \right)\).
Do đó \(AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\).
Vậy (I) đúng.
• Ta xét (II):
Trên tia AD, lấy điểm A’ sao cho DA’ = DA.
Xét ∆ADB và ∆A’DC, có:
DA = DA’,
\(\widehat {ADB} = \widehat {A'DC}\) (hai góc đối đỉnh),
BD = CD (do AD là đường trung tuyến của ∆ABC),
Do đó ∆ADB = ∆A’DC (c.g.c).
Suy ra AB = A’C (hai cạnh tương ứng).
Áp dụng bất đẳng thức tam giác cho ∆AA’C, ta được:
AA’ < AC + A’C.
Suy ra AA’ < AC + AB hay 2AD < AC + AB (4).
Chứng minh tương tự, ta được:
+) 2BE < AB + BC (5).
+) 2CF < AC + BC (6).
Lấy (4) + (5) + (6) vế theo vế, ta được:
2AD + 2BE + 2CF < 2AC + 2AB + 2BC.
Suy ra 2(AD + BE + CF) < 2(AB + AC + BC).
Do đó AD + BE + CF < AB + AC + BC.
Vậy (II) đúng.
Kết luận: cả (I) và (II) đều đúng.
Ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 15 đề thi Học kì 2 Toán 7 có đáp án (Mới nhất) - đề 2
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1