Câu hỏi:

30/10/2022 657 Lưu

Một con đường quốc lộ có vị trí với hai điểm dân cư A và B như hình vẽ dưới đây.

Media VietJack

Hãy tìm trên đường quốc lộ đó một địa điểm C để xây dựng trạm y tế sao cho trạm y tế cách đều hai điểm dân cư A và B.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Media VietJack

Vì trạm y tế C cách đều hai khu dân cư A và B.

Nên C thuộc đường trung trực d của đoạn thẳng AB nối hai khu dân cư.

Mà C nằm trên đường quốc lộ nên C là giao điểm của đường quốc lộ và đường trung trực của đoạn thẳng nối hai khu dân cư.

Do đó để xây dựng trạm y tế ở bên đường cách đều hai điểm dân cư thì trạm y tế đó phải là giao điểm giữa con đường quốc lộ và đường trung trực của đoạn thẳng AB nối hai khu dân cư.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Theo bất đẳng thức ta có:

BC – AB < AC < BC + AC

Hay 30 – 18 < AC < 30 + 18

Suy ra 12 < AC < 48

Nếu đặt ở khu vực A một thiết bị phát wifi đảm bảo cả hai khu vực B và C đều nhận được tín hiệu thì bán kính hoạt động cần lớn hơn khoảng cách AB và AC.

Do đó trong các bán kính hoạt động của thiết bị phát wifi được nêu ở các phương án thì bán kính hợp lí là 48 m.

Ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Media VietJack

• Ta xét (I):

Vì G là trọng tâm của ∆ABC nên ta có \(GB = \frac{2}{3}BE\)\(GC = \frac{2}{3}CF\).

∆GBC có GB + GC > BC (bất đẳng thức tam giác).

Suy ra \(\frac{2}{3}BE + \frac{2}{3}CF > BC\).

Hay \(\frac{2}{3}\left( {BE + CF} \right) > BC\).

Do đó \(BE + CF > \frac{3}{2}BC\) (1).

Chứng minh tương tự ta được:

+) \(AD + BE > \frac{3}{2}AB\) (2).

+) \(AD + CF > \frac{3}{2}AC\) (3).

Lấy (1) + (2) + (3) vế theo vế, ta được:

\(2AD + 2BE + 2CF > \frac{3}{2}AB + \frac{3}{2}BC + \frac{3}{2}AC\).

Suy ra \(2\left( {AD + BE + CF} \right) > \frac{3}{2}\left( {AB + BC + AC} \right)\).

Do đó \(AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\).

Vậy (I) đúng.

• Ta xét (II):

Trên tia AD, lấy điểm A’ sao cho DA’ = DA.

Xét ∆ADB và ∆A’DC, có:

DA = DA’,

\(\widehat {ADB} = \widehat {A'DC}\) (hai góc đối đỉnh),

BD = CD (do AD là đường trung tuyến của ∆ABC),

Do đó ∆ADB = ∆A’DC (c.g.c).

Suy ra AB = A’C (hai cạnh tương ứng).

Áp dụng bất đẳng thức tam giác cho ∆AA’C, ta được:

AA’ < AC + A’C.

Suy ra AA’ < AC + AB hay 2AD < AC + AB (4).

Chứng minh tương tự, ta được:

+) 2BE < AB + BC (5).

+) 2CF < AC + BC (6).

Lấy (4) + (5) + (6) vế theo vế, ta được:

2AD + 2BE + 2CF < 2AC + 2AB + 2BC.

Suy ra 2(AD + BE + CF) < 2(AB + AC + BC).

Do đó AD + BE + CF < AB + AC + BC.

Vậy (II) đúng.

Kết luận: cả (I) và (II) đều đúng.

Ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP