Câu hỏi:
30/10/2022 985Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G.
Cho các phát biểu sau:
(I) \[AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\];
(II) AD + BE + CF < AB + BC + AC.
Chọn khẳng định đúng:
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
• Ta xét (I):
Vì G là trọng tâm của ∆ABC nên ta có \(GB = \frac{2}{3}BE\) và \(GC = \frac{2}{3}CF\).
∆GBC có GB + GC > BC (bất đẳng thức tam giác).
Suy ra \(\frac{2}{3}BE + \frac{2}{3}CF > BC\).
Hay \(\frac{2}{3}\left( {BE + CF} \right) > BC\).
Do đó \(BE + CF > \frac{3}{2}BC\) (1).
Chứng minh tương tự ta được:
+) \(AD + BE > \frac{3}{2}AB\) (2).
+) \(AD + CF > \frac{3}{2}AC\) (3).
Lấy (1) + (2) + (3) vế theo vế, ta được:
\(2AD + 2BE + 2CF > \frac{3}{2}AB + \frac{3}{2}BC + \frac{3}{2}AC\).
Suy ra \(2\left( {AD + BE + CF} \right) > \frac{3}{2}\left( {AB + BC + AC} \right)\).
Do đó \(AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\).
Vậy (I) đúng.
• Ta xét (II):
Trên tia AD, lấy điểm A’ sao cho DA’ = DA.
Xét ∆ADB và ∆A’DC, có:
DA = DA’,
\(\widehat {ADB} = \widehat {A'DC}\) (hai góc đối đỉnh),
BD = CD (do AD là đường trung tuyến của ∆ABC),
Do đó ∆ADB = ∆A’DC (c.g.c).
Suy ra AB = A’C (hai cạnh tương ứng).
Áp dụng bất đẳng thức tam giác cho ∆AA’C, ta được:
AA’ < AC + A’C.
Suy ra AA’ < AC + AB hay 2AD < AC + AB (4).
Chứng minh tương tự, ta được:
+) 2BE < AB + BC (5).
+) 2CF < AC + BC (6).
Lấy (4) + (5) + (6) vế theo vế, ta được:
2AD + 2BE + 2CF < 2AC + 2AB + 2BC.
Suy ra 2(AD + BE + CF) < 2(AB + AC + BC).
Do đó AD + BE + CF < AB + AC + BC.
Vậy (II) đúng.
Kết luận: cả (I) và (II) đều đúng.
Ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ba vị trí của khu vực A, B, C trong một trường học được mô tả như hình vẽ dưới đây.
Nếu đặt ở khu vực A một thiết bị phát wifi thì cần có bán kính hoạt động là bao nhiêu để cả hai khu vực B và C đều nhận được tín hiệu?
Câu 2:
Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi H, J, K lần lượt là chân đường vuông góc kẻ từ I đến AB, AC, BC. Biết KI = 5 cm, BK = 10 cm, KC = 15 cm. Diện tích tam giác ABC bằng:
Câu 3:
Hai nhà máy được xây dựng tại hai địa điểm A và B cùng nằm về một phía của khúc sông thẳng. Lấy điểm mốc D ở phía bên kia bờ sông là điểm đối xứng của nhà máy A qua khúc sông thẳng.
Tìm trên bờ sông một địa điểm C để xây dựng trạm bơm sao cho tổng chiều dài đường ống dẫn nước từ C đến A và đến B nhỏ nhất.
Câu 4:
Một con đường quốc lộ có vị trí với hai điểm dân cư A và B như hình vẽ dưới đây.
Hãy tìm trên đường quốc lộ đó một địa điểm C để xây dựng trạm y tế sao cho trạm y tế cách đều hai điểm dân cư A và B.
Câu 5:
Cho tam giác MNP có ba đường phân giác MA, NB, PC cắt nhau tại I. Vẽ IH vuông góc NP tại H. Khẳng định nào dưới đây là đúng:
Câu 6:
Cho tam giác ABC có \(\widehat A = \alpha \) là góc tù. Các đường trung trực của các cạnh AB và AC cắt nhau tại I. Tính số đo của góc BIC theo α ta được:
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
10 câu Trắc nghiệm Toán 7 CD Bài tập cuối chương 7 có đáp án (Nhận biết)
5 câu Trắc nghiệm Toán 7 CTST Bài tập cuối chương 9 có đáp án (Nhận biết)
về câu hỏi!