Cho hàm số \(y = f(x)\)có đạo hàm tại \({x_0}\) là \[f'({x_0})\]. Khẳng định nào sau đây sai?
Cho hàm số \(y = f(x)\)có đạo hàm tại \({x_0}\) là \[f'({x_0})\]. Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn D
A. Đúng (theo định nghĩa đạo hàm tại một điểm).
B. Đúng vì
\[\begin{array}{l}\Delta x = x - {x_0} \Rightarrow x = \Delta x + {x_0}\\\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\\ \Rightarrow f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x + {x_0} - {x_0}}} = \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\]
C. Đúng vì
Đặt \[h = \Delta x = x - {x_0} \Rightarrow x = h + {x_0},\] \[\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\]
\[ \Rightarrow f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{{h + {x_0} - {x_0}}} = \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h}\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Chọn B
Ta có
\[\begin{array}{l}{ \bullet _{}}f\left( 2 \right) = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - \frac{{{x^2}}}{2} + bx - 6} \right) = 2b - 8\end{array}\]
\[f\left( x \right)\] có đạo hàm tại \(x = 2\) khi và chỉ khi \[f\left( x \right)\] liên tục tại \(x = 2\)
\[ \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 2b - 8 = 4 \Leftrightarrow b = 6.\]
Lời giải
Hướng dẫn giải:
Chọn A
Ta có
\[\begin{array}{l}\Delta y = f\left( {\Delta x + x} \right) - f\left( x \right)\\ = {\left( {\Delta x + x} \right)^2} - 4\left( {\Delta x + x} \right) + 1 - \left( {{x^2} - 4x + 1} \right)\\ = \Delta {x^2} + 2\Delta x.x + {x^2} - 4\Delta x - 4x + 1 - {x^2} + 4x - 1 = \Delta {x^2} + 2\Delta x.x - 4\Delta x\\ = \Delta x\left( {\Delta x + 2x - 4} \right)\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.