Câu hỏi:

29/11/2022 456

Cho hàm số \(y = f(x)\)có đạo hàm tại \({x_0}\)\[f'({x_0})\]. Khẳng định nào sau đây sai?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D

A. Đúng (theo định nghĩa đạo hàm tại một điểm).

B. Đúng vì

 \[\begin{array}{l}\Delta x = x - {x_0} \Rightarrow x = \Delta x + {x_0}\\\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\\ \Rightarrow f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x + {x_0} - {x_0}}} = \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\]

C. Đúng vì

Đặt \[h = \Delta x = x - {x_0} \Rightarrow x = h + {x_0},\] \[\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\]

\[ \Rightarrow f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{{h + {x_0} - {x_0}}} = \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số gia của hàm số \[f\left( x \right) = {x^2} - 4x + 1\] ứng với x và \[\Delta x\]

Xem đáp án » 29/11/2022 7,779

Câu 2:

Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số \(y = f(x)\) tại\[{x_0} < 1\]?

Xem đáp án » 29/11/2022 6,808

Câu 3:

Tìm \[a,b\] để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + x{\rm{ }}khi{\rm{ }}x \ge 1\\ax + b{\rm{ }}khi{\rm{ }}x < 1\end{array} \right.\] có đạo hàm tại \[x = 1\].

Xem đáp án » 29/11/2022 6,475

Câu 4:

Cho hàm số \[f(x) = \left\{ \begin{array}{l}{x^2}{\rm{                       khi   }}x \le 2\\ - \frac{{{x^2}}}{2} + bx - 6{\rm{       khi    }}x > 2\end{array} \right.\]. Để hàm số này có đạo hàm tại \(x = 2\) thì giá trị của b

Xem đáp án » 29/11/2022 4,410

Câu 5:

\(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^3} - 2{x^2} + x + 1} - 1}}{{x - 1}}{\rm{ khi }}x \ne 1\\0{\rm{                            khi }}x = 1\end{array} \right.\) tại điểm \({x_0} = 1\).

Xem đáp án » 29/11/2022 3,379

Câu 6:

Cho hàm số \[f(x) = \left\{ \begin{array}{l}\frac{{{x^2}}}{2}{\rm{            khi   }}x \le 1\\ax + b{\rm{       khi    }}x > 1\end{array} \right.\]. Với giá trị nào sau đây của a, b thì hàm số có đạo hàm tại \(x = 1\)?

Xem đáp án » 29/11/2022 2,974

Câu 7:

Tìm a,b để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + 1{\rm{           }}khi{\rm{ }}x \ge 0\\2{x^2} + ax + b{\rm{ }}khi{\rm{ }}x < 0\end{array} \right.\]có đạo hàm trên \(\mathbb{R}\).

Xem đáp án » 29/11/2022 2,112

Bình luận


Bình luận
Vietjack official store