Câu hỏi:

29/11/2022 121

Xét ba mệnh đề sau:

     (1) Nếu hàm số \[f\left( x \right)\] có đạo hàm tại điểm \[x = {x_0}\]thì \[f\left( x \right)\] liên tục tại điểm đó.

     (2) Nếu hàm số \[f\left( x \right)\] liên tục tại điểm \[x = {x_0}\] thì \[f\left( x \right)\] có đạo hàm tại điểm đó.

     (3) Nếu \[f\left( x \right)\] gián đoạn tại \[x = {x_0}\] thì chắc chắn \[f\left( x \right)\] không có đạo hàm tại điểm đó.

     Trong ba câu trên:

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn A

(1) Nếu hàm số \[f\left( x \right)\] có đạo hàm tại điểm \[x = {x_0}\]thì \[f\left( x \right)\] liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số \[f\left( x \right)\] liên tục tại điểm \[x = {x_0}\] thì \[f\left( x \right)\] có đạo hàm tại điểm đó.

Phản ví dụ

Lấy hàm \[f\left( x \right) = \left| x \right|\] ta có \[D = \mathbb{R}\] nên hàm số \[f\left( x \right)\] liên tục trên \[\mathbb{R}\].

Nhưng ta có \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{x - 0}}{{x - 0}} = 1\\\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{ - x - 0}}{{x - 0}} = - 1\end{array} \right.\]

Nên hàm số không có đạo hàm tại \[x = 0\].

Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu \[f\left( x \right)\] gián đoạn tại \[x = {x_0}\] thì chắc chắn \[f\left( x \right)\] không có đạo hàm tại điểm đó.

Vì (1) là mệnh đề đúng nên ta có \[f\left( x \right)\] không liên tục tại \[x = {x_0}\] thì \[f\left( x \right)\] có đạo hàm tại điểm đó.

Vậy (3) là mệnh đề đúng.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số gia của hàm số \[f\left( x \right) = {x^2} - 4x + 1\] ứng với x và \[\Delta x\]

Xem đáp án » 29/11/2022 7,471

Câu 2:

Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số \(y = f(x)\) tại\[{x_0} < 1\]?

Xem đáp án » 29/11/2022 6,442

Câu 3:

Tìm \[a,b\] để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + x{\rm{ }}khi{\rm{ }}x \ge 1\\ax + b{\rm{ }}khi{\rm{ }}x < 1\end{array} \right.\] có đạo hàm tại \[x = 1\].

Xem đáp án » 29/11/2022 5,071

Câu 4:

Cho hàm số \[f(x) = \left\{ \begin{array}{l}{x^2}{\rm{                       khi   }}x \le 2\\ - \frac{{{x^2}}}{2} + bx - 6{\rm{       khi    }}x > 2\end{array} \right.\]. Để hàm số này có đạo hàm tại \(x = 2\) thì giá trị của b

Xem đáp án » 29/11/2022 3,630

Câu 5:

Cho hàm số \[f(x) = \left\{ \begin{array}{l}\frac{{{x^2}}}{2}{\rm{            khi   }}x \le 1\\ax + b{\rm{       khi    }}x > 1\end{array} \right.\]. Với giá trị nào sau đây của a, b thì hàm số có đạo hàm tại \(x = 1\)?

Xem đáp án » 29/11/2022 2,322

Câu 6:

Tìm a,b để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + 1{\rm{           }}khi{\rm{ }}x \ge 0\\2{x^2} + ax + b{\rm{ }}khi{\rm{ }}x < 0\end{array} \right.\]có đạo hàm trên \(\mathbb{R}\).

Xem đáp án » 29/11/2022 1,863

Câu 7:

\(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^3} - 2{x^2} + x + 1} - 1}}{{x - 1}}{\rm{ khi }}x \ne 1\\0{\rm{                            khi }}x = 1\end{array} \right.\) tại điểm \({x_0} = 1\).

Xem đáp án » 29/11/2022 1,297

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn