Câu hỏi:

29/11/2022 680

\(f(x) = \left\{ \begin{array}{l}\frac{{{{\sin }^2}x}}{x}{\rm{            khi }}x > 0\\x + {x^2}{\rm{            khi }}x \le 0{\rm{ }}\end{array} \right.\) tại \({x_0} = 0\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn A

Ta có \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{{\sin }^2}x}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{{\sin x}}{x}.\sin x} \right) = 0\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {x + {x^2}} \right) = 0\) nên hàm số liên tục tại \(x = 0\)

\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(x) - f(0)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{{\sin }^2}x}}{{{x^2}}} = 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(x) - f(0)}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{x + {x^2}}}{x} = 1\)

Vậy \(f'(0) = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Chọn B

Ta có

\[\begin{array}{l}{ \bullet _{}}f\left( 2 \right) = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - \frac{{{x^2}}}{2} + bx - 6} \right) = 2b - 8\end{array}\]

\[f\left( x \right)\] có đạo hàm tại \(x = 2\) khi và chỉ khi \[f\left( x \right)\] liên tục tại \(x = 2\)

     \[ \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 2b - 8 = 4 \Leftrightarrow b = 6.\]

Câu 2

Lời giải

Hướng dẫn giải:

Chọn A

Ta có

\[\begin{array}{l}\Delta y = f\left( {\Delta x + x} \right) - f\left( x \right)\\ = {\left( {\Delta x + x} \right)^2} - 4\left( {\Delta x + x} \right) + 1 - \left( {{x^2} - 4x + 1} \right)\\ = \Delta {x^2} + 2\Delta x.x + {x^2} - 4\Delta x - 4x + 1 - {x^2} + 4x - 1 = \Delta {x^2} + 2\Delta x.x - 4\Delta x\\ = \Delta x\left( {\Delta x + 2x - 4} \right)\end{array}\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP