Câu hỏi:
29/11/2022 2,833
Tìm a,b để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + 1{\rm{ }}khi{\rm{ }}x \ge 0\\2{x^2} + ax + b{\rm{ }}khi{\rm{ }}x < 0\end{array} \right.\]có đạo hàm trên \(\mathbb{R}\).
Tìm a,b để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + 1{\rm{ }}khi{\rm{ }}x \ge 0\\2{x^2} + ax + b{\rm{ }}khi{\rm{ }}x < 0\end{array} \right.\]có đạo hàm trên \(\mathbb{R}\).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn C
Ta thấy với \[x \ne 0\] thì \[f(x)\] luôn có đạo hàm. Do đó hàm số có đạo hàm trên \(\mathbb{R}\) khi và chỉ khi hàm có đạo hàm tại\[x = 0\].
Ta có: \[\mathop {\lim }\limits_{x \to {0^ + }} f(x) = 1;{\rm{ }}\mathop {\lim }\limits_{x \to {0^ - }} f(x) = b \Rightarrow \]\[f(x)\] liên tục tại\[x = 0 \Leftrightarrow b = 1\].
Khi đó: \[f'({0^ + }) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(x) - f(0)}}{x} = 0;{\rm{ }}f'({0^ - }) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(x) - f(0)}}{x} = a\]
\[ \Rightarrow f'({0^ + }) = f'({0^ - }) \Leftrightarrow a = 0\].
Vậy \[a = 0,b = 1\] là những giá trị cần tìm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Chọn B
Ta có
\[\begin{array}{l}{ \bullet _{}}f\left( 2 \right) = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - \frac{{{x^2}}}{2} + bx - 6} \right) = 2b - 8\end{array}\]
\[f\left( x \right)\] có đạo hàm tại \(x = 2\) khi và chỉ khi \[f\left( x \right)\] liên tục tại \(x = 2\)
\[ \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 2b - 8 = 4 \Leftrightarrow b = 6.\]
Lời giải
Hướng dẫn giải:
Chọn A
Ta có
\[\begin{array}{l}\Delta y = f\left( {\Delta x + x} \right) - f\left( x \right)\\ = {\left( {\Delta x + x} \right)^2} - 4\left( {\Delta x + x} \right) + 1 - \left( {{x^2} - 4x + 1} \right)\\ = \Delta {x^2} + 2\Delta x.x + {x^2} - 4\Delta x - 4x + 1 - {x^2} + 4x - 1 = \Delta {x^2} + 2\Delta x.x - 4\Delta x\\ = \Delta x\left( {\Delta x + 2x - 4} \right)\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.