Câu hỏi:
01/12/2022 5,253
Cho hàm số\[f\left( x \right)\]xác định trên \[\mathbb{R}\] bởi\[f\left( x \right) = ax + b\], với \[a,\]\[b\] là hai số thực đã cho. Chọn câu đúng:
Cho hàm số\[f\left( x \right)\]xác định trên \[\mathbb{R}\] bởi\[f\left( x \right) = ax + b\], với \[a,\]\[b\] là hai số thực đã cho. Chọn câu đúng:
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn A.
Sử dụng các công thức đạo hàm: \[{\left( c \right)^\prime } = 0\] với \[c = const\]; \[x' = 1\]; \[{\left( {k.u} \right)^\prime } = k.u'\] với \[k = const\].
\[{\left( {{x^n}} \right)^\prime } = n.{x^{n - 1}}\] với \[n\] là số nguyên dương ;\[{\left( {u + v} \right)^\prime } = u' + v'\];
Ta có \[f'\left( x \right) = {\left( {ax + b} \right)^\prime } = ax' + b' = a\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Chọn D.
Lời giải
Hướng dẫn giải:
Chọn A
Cách 1: Áp dụng công thức \[{\left( {{u^n}} \right)^\prime }\]
Ta có \(y' = 2.\left( {{x^3} - 2{x^2}} \right).{\left( {{x^3} - 2{x^2}} \right)^\prime } = 2\left( {{x^3} - 2{x^2}} \right).\left( {3{x^2} - 4x} \right)\)
\( = 6{x^5} - 8{x^4} - 12{x^4} + 16{x^3} = 6{x^5} - 20{x^4} + 16{x^3}\)
Cách 2 : Khai triển hằng đẳng thức :
Ta có: \[y = {\left( {{x^3} - 2{x^2}} \right)^2} = {x^6} - 4{x^5} + 4{x^4}\] \[ \Rightarrow y' = 6{x^5} - 20{x^4} + 16{x^3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.