Cho hàm số \[f\left( x \right)\]xác định trên \[\mathbb{R}\] bởi \[f\left( x \right) = - 2{x^2} + 3x\]. Hàm số có đạo hàm \[f'\left( x \right)\] bằng:
Quảng cáo
Trả lời:

Hướng dẫn giải:
Chọn B.
Sử dụng các công thức đạo hàm: \[x' = 1\]; \[{\left( {k.u} \right)^\prime } = k.u'\];\[{\left( {{x^n}} \right)^\prime } = n.{x^{n - 1}}\];\[{\left( {u + v} \right)^\prime } = u' + v'\].
\[f'\left( x \right) = {\left( { - 2{x^2} + 3x} \right)^\prime } = - 2{\left( {{x^2}} \right)^\prime } + 3x' = - 4x + 3\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Chọn D.
Lời giải
Hướng dẫn giải:
Chọn B
Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{ }}b\\c{\rm{ }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.