Câu hỏi:
02/12/2022 115Tính đạo hàm của hàm số sau: \(y = {\left( {{x^2} - x + 1} \right)^3}.{\left( {{x^2} + x + 1} \right)^2}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn C
Đầu tiên sử dụng quy tắc nhân.
\(y' = {\left[ {{{\left( {{x^2} - x + 1} \right)}^3}} \right]^/}{\left( {{x^2} + x + 1} \right)^2} + {\left[ {{{\left( {{x^2} + x + 1} \right)}^2}} \right]^/}{\left( {{x^2} - x + 1} \right)^3}.\)
Sau đó sử dụng công thức \({\left( {{u^\alpha }} \right)^/}\)
\(y' = 3{\left( {{x^2} - x + 1} \right)^2}{\left( {{x^2} - x + 1} \right)^/}\left( {{x^2} + x + 1} \right) + 2\left( {{x^2} + x + 1} \right){\left( {{x^2} + x + 1} \right)^/}{\left( {{x^2} - x + 1} \right)^3}\)
\(y' = 3{\left( {{x^2} - x + 1} \right)^2}\left( {2x - 1} \right){\left( {{x^2} + x + 1} \right)^2} + 2\left( {{x^2} + x + 1} \right)\left( {2x + 1} \right){\left( {{x^2} - x + 1} \right)^3}\)
\(y' = {\left( {{x^2} - x + 1} \right)^2}\left( {{x^2} + x + 1} \right)\left[ {3\left( {2x - 1} \right)\left( {{x^2} + x + 1} \right) + 2\left( {2x + 1} \right)\left( {{x^2} - x + 1} \right)} \right]\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!