Câu hỏi:

02/12/2022 207 Lưu

Tính đạo hàm của hàm số sau: \(y = {\left( {{x^2} - x + 1} \right)^3}.{\left( {{x^2} + x + 1} \right)^2}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn C

Đầu tiên sử dụng quy tắc nhân.

\(y' = {\left[ {{{\left( {{x^2} - x + 1} \right)}^3}} \right]^/}{\left( {{x^2} + x + 1} \right)^2} + {\left[ {{{\left( {{x^2} + x + 1} \right)}^2}} \right]^/}{\left( {{x^2} - x + 1} \right)^3}.\)

Sau đó sử dụng công thức \({\left( {{u^\alpha }} \right)^/}\)

\(y' = 3{\left( {{x^2} - x + 1} \right)^2}{\left( {{x^2} - x + 1} \right)^/}\left( {{x^2} + x + 1} \right) + 2\left( {{x^2} + x + 1} \right){\left( {{x^2} + x + 1} \right)^/}{\left( {{x^2} - x + 1} \right)^3}\)

\(y' = 3{\left( {{x^2} - x + 1} \right)^2}\left( {2x - 1} \right){\left( {{x^2} + x + 1} \right)^2} + 2\left( {{x^2} + x + 1} \right)\left( {2x + 1} \right){\left( {{x^2} - x + 1} \right)^3}\)

\(y' = {\left( {{x^2} - x + 1} \right)^2}\left( {{x^2} + x + 1} \right)\left[ {3\left( {2x - 1} \right)\left( {{x^2} + x + 1} \right) + 2\left( {2x + 1} \right)\left( {{x^2} - x + 1} \right)} \right]\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP