Câu hỏi:
03/12/2022 593Cho hàm số \[f\left( x \right) = x + 1 - \frac{2}{{x - 1}}\]. Xét hai câu sau:
(I) \[f'\left( x \right) = \frac{{{x^2} - 2x - 1}}{{{{\left( {x - 1} \right)}^2}}}\,\,\forall x \ne 1\] (II) \(f'\left( x \right) > 0\,\,\forall x \ne 1.\)
Hãy chọn câu đúng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án B
\[f\left( x \right) = x + 1 - \frac{2}{{x - 1}} \Rightarrow f'\left( x \right) = 1 + \frac{2}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 3}}{{{{\left( {x - 1} \right)}^2}}} > 0\,\forall x \ne 1\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!