Câu hỏi:

03/12/2022 7,645 Lưu

Cho hàm số \[f(x) = \frac{{{x^2} + x - 1}}{{x - 1}}\]. Xét hai câu sau:

\[(I):f'(x) = 1 - \frac{1}{{{{(x - 1)}^2}}},\]\[\forall x \ne 1.\]     \[(II):f'(x) = \frac{{{x^2} - 2x}}{{{{(x - 1)}^2}}},\]\[\forall x \ne 1.\]

Hãy chọn câu đúng:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn D

Áp dụng công thức \[{\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'.v - v'.u}}{{{v^2}}}\] ta có:

\[\forall x \ne 1\], ta có: \[f(x) = \frac{{{x^2} + x - 1}}{{x - 1}}\]\[ \Rightarrow \]\[f'(x) = \frac{{({x^2} + x - 1)'.(x - 1) - (x - 1)'.({x^2} + x - 1)}}{{{{(x - 1)}^2}}}\]

\[ \Rightarrow \]\[f'(x)\]\[ = \]\[\frac{{(2x + 1).(x - 1) - 1.({x^2} + x - 1)}}{{{{(x - 1)}^2}}}\]\[ = \]\[\frac{{2{x^2} - 2x + x - 1 - {x^2} - x + 1}}{{{{(x - 1)}^2}}}\]\[ = \]\[\frac{{{x^2} - 2x}}{{{{(x - 1)}^2}}}\] \[ \Rightarrow \]\[(II)\]đúng.

Mặt khác:\[f'(x)\]\[ = \]\[\frac{{{x^2} - 2x}}{{{{(x - 1)}^2}}} = \frac{{{x^2} - 2x + 1 - 1}}{{{{(x - 1)}^2}}} = \frac{{{{(x - 1)}^2} - 1}}{{{{(x - 1)}^2}}} = 1 - \frac{1}{{{{(x - 1)}^2}}}\] \[ \Rightarrow \]\[(I)\]đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP