Câu hỏi:

03/12/2022 3,295

Đạo hàm của hàm số \(y = \frac{{x(1 - 3x)}}{{x + 1}}\) bằng biểu thức nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn B

Áp dụng công thức \[{\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'.v - v'.u}}{{{v^2}}}.\] Có : \(y = \frac{{x(1 - 3x)}}{{x + 1}}\)\( = \)\(\frac{{ - 3{x^2} + x}}{{x + 1}}\), nên:

\(y' = \frac{{( - 3{x^2} + x)'.(x + 1) - (x + 1)'.( - 3{x^2} + x)}}{{{{(x + 1)}^2}}}\)\( = \)\(\frac{{( - 6x + 1).(x + 1) - 1.( - 3{x^2} + x)}}{{{{(x + 1)}^2}}}\)

\( \Rightarrow \)\(y'\)\( = \)\(\frac{{ - 6{x^2} - 6x + x + 1 + 3{x^2} - x}}{{{{(x + 1)}^2}}}\)\( = \)\(\frac{{ - 3{x^2} - 6x + 1}}{{{{(x + 1)}^2}}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn A

Cách 1: Áp dụng công thức \[{\left( {{u^n}} \right)^\prime }\]

Ta có \(y' = 2.\left( {{x^3} - 2{x^2}} \right).{\left( {{x^3} - 2{x^2}} \right)^\prime } = 2\left( {{x^3} - 2{x^2}} \right).\left( {3{x^2} - 4x} \right)\)

\( = 6{x^5} - 8{x^4} - 12{x^4} + 16{x^3} = 6{x^5} - 20{x^4} + 16{x^3}\)

Cách 2 : Khai triển hằng đẳng thức :

Ta có: \[y = {\left( {{x^3} - 2{x^2}} \right)^2} = {x^6} - 4{x^5} + 4{x^4}\] \[ \Rightarrow y' = 6{x^5} - 20{x^4} + 16{x^3}\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP