Câu hỏi:

03/12/2022 2,615

Cho hàm số\(y = \frac{{ - 2{x^2} + x - 7}}{{{x^2} + 3}}\). Đạo hàm\(y'\)của hàm số là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn C

Áp dụng công thức \[{\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'.v - v'.u}}{{{v^2}}}.\]Ta có:

\(y = \frac{{ - 2{x^2} + x - 7}}{{{x^2} + 3}}\)\( \Rightarrow \)\(y' = \frac{{( - 2{x^2} + x - 7)'.({x^2} + 3) - ({x^2} + 3)'.( - 2{x^2} + x - 7)}}{{{{({x^2} + 3)}^2}}}\)

\( \Rightarrow \)\(y' = \frac{{( - 4x + 1).({x^2} + 3) - 2x.( - 2{x^2} + x - 7)}}{{{{({x^2} + 3)}^2}}}\)\( = \)\(\frac{{ - 4{x^3} - 12x + {x^2} + 3 + 4{x^3} - 2{x^2} + 14x}}{{{{({x^2} + 3)}^2}}}\)

\( \Rightarrow \)\(y' = \frac{{ - {x^2} + 2x + 3}}{{{{({x^2} + 3)}^2}}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn A

Cách 1: Áp dụng công thức \[{\left( {{u^n}} \right)^\prime }\]

Ta có \(y' = 2.\left( {{x^3} - 2{x^2}} \right).{\left( {{x^3} - 2{x^2}} \right)^\prime } = 2\left( {{x^3} - 2{x^2}} \right).\left( {3{x^2} - 4x} \right)\)

\( = 6{x^5} - 8{x^4} - 12{x^4} + 16{x^3} = 6{x^5} - 20{x^4} + 16{x^3}\)

Cách 2 : Khai triển hằng đẳng thức :

Ta có: \[y = {\left( {{x^3} - 2{x^2}} \right)^2} = {x^6} - 4{x^5} + 4{x^4}\] \[ \Rightarrow y' = 6{x^5} - 20{x^4} + 16{x^3}\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP