Câu hỏi:
03/12/2022 487Cho hàm số \(y = \frac{{2x + 5}}{{{x^2} + 3x + 3}}\). Đạo hàm \[y'\]của hàm số là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn B
Ta có \(y' = \frac{{{{\left( {2x + 5} \right)}^\prime }.\left( {{x^2} + 3x + 3} \right) - \left( {2x + 5} \right){{\left( {{x^2} + 3x + 3} \right)}^\prime }}}{{{{\left( {{x^2} + 3x + 3} \right)}^2}}}\)\( = \frac{{2\left( {{x^2} + 3x + 3} \right) - \left( {2x + 5} \right).\left( {2x + 3} \right)}}{{{{\left( {{x^2} + 3x + 3} \right)}^2}}} = \frac{{2{x^2} + 6x + 6 - 4{x^2} - 6x - 10x - 15}}{{{{\left( {{x^2} + 3x + 3} \right)}^2}}}\)
\( = \frac{{ - 2{x^2} - 10x - 9}}{{{{\left( {{x^2} + 3x + 3} \right)}^2}}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!