Câu hỏi:
03/12/2022 815Cho hàm số \(y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}.\) Đạo hàm \[y'\] của hàm số là.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn D
Ta có: \(y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}.\)
\(y' = \frac{{{{\left( {2{x^3} + 3x - 1} \right)}^'}\left( {{x^2} - 5x + 2} \right) - \left( {2{x^3} + 3x - 1} \right){{\left( {{x^2} - 5x + 2} \right)}^'}}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}.\)
\(y' = \frac{{\left( {6{x^2} + 3} \right)\left( {{x^2} - 5x + 2} \right) - \left( {2{x^3} + 3x - 1} \right)\left( {2x - 5} \right)}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}} = \frac{{ - 13{x^2} + 10x + 1}}{{{{({x^2} - 5x + 2)}^2}}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!