Câu hỏi:

04/12/2022 154 Lưu

Tính đạo hàm các hàm số sau \(y = x\sqrt {{x^2} + 1} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn D

Ta có: \(y' = x'\sqrt {{x^2} + 1} + \left( {\sqrt {{x^2} + 1} } \right)'x = \sqrt {{x^2} + 1} + \frac{{({x^2} + 1)'}}{{2\sqrt {{x^2} + 1} }}.x\)

     \( = \sqrt {{x^2} + 1} + \frac{{{x^2}}}{{\sqrt {{x^2} + 1} }} = \frac{{2{x^2} + 1}}{{\sqrt {{x^2} + 1} }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP