Câu hỏi:
04/12/2022 3,828Cho hàm số \[f\left( x \right)\]xác định trên \[D = \left[ {0; + \infty } \right)\] cho bởi \[f\left( x \right) = x\sqrt x \] có đạo hàm là:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn B.
\[\left( {u.v} \right)' = u'.v + u.v'\]; \[\left( {\sqrt x } \right)' = \frac{1}{{2\sqrt x }}\]; \[x' = 1\].
Ta có \[f'\left( x \right) = \left( {x\sqrt x } \right)' = x'.\sqrt x + x.\left( {\sqrt x } \right)' = \sqrt x + \frac{x}{{2\sqrt x }} = \sqrt x + \frac{1}{2}\sqrt x = \frac{3}{2}\sqrt x \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!