Câu hỏi:
04/12/2022 741Hàm số \(f\left( x \right) = {\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^3}\)xác định trên \[D = \left( {0; + \infty } \right)\]. Đạo hàm của hàm \[f\left( x \right)\]là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn A.
Sử dụng công thức đạo hàm hợp: \[\left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\] và \[{\left( {\frac{1}{u}} \right)^'} = - \frac{{u'}}{{{u^2}}}\].
·Ta có: \(f'\left( x \right)\)\[ = 3{\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^2}.\left( {\frac{1}{{2\sqrt x }} + \frac{1}{{2x\sqrt x }}} \right)\]\[ = 3.\frac{1}{{2\sqrt x }}\left( {x - 2 + \frac{1}{x}} \right).\left( {1 + \frac{1}{x}} \right)\]
\[ = \frac{3}{{2\sqrt x }}\left( {x - 1 - \frac{1}{x} + \frac{1}{{{x^2}}}} \right)\]\( = \frac{3}{2}\left( {\sqrt x - \frac{1}{{\sqrt x }} - \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!