Câu hỏi:

04/12/2022 630 Lưu

Đạo hàm của hàm số \(y = \frac{{\sqrt x }}{{1 - 2x}}\) bằng biểu thức nào sau đây?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải::

Chọn D

Ta có

\(y' = \frac{{{{\left( {\sqrt x } \right)}^\prime }.\left( {1 - 2x} \right) - {{\left( {1 - 2x} \right)}^\prime }.\sqrt x }}{{{{\left( {1 - 2x} \right)}^2}}} = \frac{{\frac{1}{{2\sqrt x }}.\left( {1 - 2x} \right) + 2\sqrt x }}{{{{\left( {1 - 2x} \right)}^2}}}\)

\[ = \frac{{\frac{{1 - 2x + 4x}}{{2\sqrt x }}}}{{{{\left( {1 - 2x} \right)}^2}}} = \frac{{1 + 2x}}{{2\sqrt x {{\left( {1 - 2x} \right)}^2}}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP