Câu hỏi:
04/12/2022 2,406Đạo hàm của hàm số \[y = \frac{{2x - 3}}{{5 + x}} - \sqrt {2x} \] là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn A
Cách 1:Ta có \(y' = \frac{{{{\left( {2x - 3} \right)}^\prime }.\left( {5 + x} \right) - \left( {2x - 3} \right).{{\left( {5 + x} \right)}^\prime }}}{{{{\left( {5 + x} \right)}^2}}} - \frac{{{{\left( {2x} \right)}^\prime }}}{{2\sqrt {2x} }}\)
\( = \frac{{2\left( {5 + x} \right) - \left( {2x - 3} \right)}}{{{{\left( {5 + x} \right)}^2}}} - \frac{2}{{2\sqrt {2x} }}.\)\( = \frac{{10 + 2x - 2x + 3}}{{{{\left( {5 + x} \right)}^2}}} - \frac{x}{{\sqrt {2x} }} = \frac{{13}}{{{{\left( {5 + x} \right)}^2}}} - \frac{x}{{\sqrt {2x} }}.\)
Cách 2: Ta có \(y' = \frac{{2.5 + 3.1}}{{{{\left( {5 + x} \right)}^2}}} - \frac{{{{\left( {2x} \right)}^\prime }}}{{2\sqrt {2x} }} = \frac{{13}}{{{{\left( {5 + x} \right)}^2}}} - \frac{x}{{\sqrt {2x} }}.\)
Có thể dùng công thức \({\left( {\frac{{ax + b}}{{cx + d}}} \right)^\prime } = \frac{{a.d - b.c}}{{{{\left( {cx + d} \right)}^2}}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!