Câu hỏi:

04/12/2022 395 Lưu

Tính đạo hàm của hàm số \(y = \left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án B

Đầu tiên sử dụng công thức \({\left( {{u^\alpha }} \right)^/}\) với \(u = \frac{{1 - \sqrt x }}{{1 + \sqrt x }}\)

\(y' = 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).{\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^/}\)

Tính \({\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^/} = \frac{{{{\left( {1 - \sqrt x } \right)}^/}\left( {1 + \sqrt x } \right) - {{\left( {1 + \sqrt x } \right)}^/}\left( {1 - \sqrt x } \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}}\)

       \( = \frac{{\frac{{ - 1}}{{2\sqrt x }}\left( {1 + \sqrt x } \right) - \frac{1}{{2\sqrt x }}\left( {1 - x} \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}} = \frac{{ - 1}}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\)

Vậy \(y' = 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).\frac{{ - 1}}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP