Câu hỏi:

04/12/2022 1,048 Lưu

Tính đạo hàm của hàm số \(y = {\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án D

Bước đầu tiên sử dụng \({\left( {{u^\alpha }} \right)^/}\)với \(u = \sqrt x - \frac{1}{{\sqrt x }}\)

\(y' = 5{\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^4}.{\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^/} = 5{\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^4}.\left( {\frac{1}{{2\sqrt x }} + \frac{{{{\left( {\sqrt x } \right)}^/}}}{{{{\left( {\sqrt x } \right)}^2}}}} \right)\)

 \( = 5{\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^4}\left( {\frac{1}{{2\sqrt x }} + \frac{1}{{2\sqrt x .x}}} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP