Câu hỏi:

04/12/2022 1,152 Lưu

Tính đạo hàm của hàm số \(y = \frac{{1 + x}}{{\sqrt {1 - x} }}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án D

Sử dụng \({\left( {\frac{u}{v}} \right)^/}\) được: \(y' = \frac{{{{\left( {1 + x} \right)}^/}\sqrt {1 - x} - {{\left( {\sqrt {1 - x} } \right)}^/}\left( {1 + x} \right)}}{{{{\left( {\sqrt {1 - x} } \right)}^2}}}\) \( = \frac{{\sqrt {1 - x} - \frac{{{{\left( {1 - x} \right)}^/}}}{{2\sqrt {1 - x} }}.\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}\)\( = \frac{{2\left( {1 - x} \right) + \left( {1 + x} \right)}}{{2\sqrt {1 - x} .\left( {1 - x} \right)}} = \frac{{3 - x}}{{2\sqrt {1 - x} \left( {1 - x} \right)}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP