Câu hỏi:
04/12/2022 660Tính đạo hàm của hàm số \(y = \frac{{1 + x}}{{\sqrt {1 - x} }}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án D
Sử dụng \({\left( {\frac{u}{v}} \right)^/}\) được: \(y' = \frac{{{{\left( {1 + x} \right)}^/}\sqrt {1 - x} - {{\left( {\sqrt {1 - x} } \right)}^/}\left( {1 + x} \right)}}{{{{\left( {\sqrt {1 - x} } \right)}^2}}}\) \( = \frac{{\sqrt {1 - x} - \frac{{{{\left( {1 - x} \right)}^/}}}{{2\sqrt {1 - x} }}.\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}\)\( = \frac{{2\left( {1 - x} \right) + \left( {1 + x} \right)}}{{2\sqrt {1 - x} .\left( {1 - x} \right)}} = \frac{{3 - x}}{{2\sqrt {1 - x} \left( {1 - x} \right)}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!