Câu hỏi:

04/12/2022 187 Lưu

Tính đạo hàm của hàm số \(y = \sqrt {x + \sqrt {x + \sqrt x } .} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án A

Đầu tiên áp dụng \(\sqrt u \) với \(u = x + \sqrt {x + \sqrt x } \)

\(y' = \frac{1}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}{\left( {x + \sqrt {x + \sqrt x } } \right)^/} = \frac{1}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}\left( {1 + \frac{1}{{2\sqrt {x + \sqrt x } }}.{{\left( {x + \sqrt x } \right)}^/}} \right)\)

 \( = \frac{1}{{2\sqrt {x + \sqrt {x + \sqrt x } } }}.\left[ {1 + \frac{1}{{2\sqrt {x + \sqrt x } }}.\left( {1 + \frac{1}{{2\sqrt x }}} \right)} \right].\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP