Câu hỏi:

05/12/2022 177 Lưu

Tính đạo hàm của hàm số \(y = \sqrt {\frac{{{x^3}}}{{x - 1}}} \) (Áp dụng căn bặc hai của u đạo hàm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án D

\(y' = \frac{1}{{2\sqrt {\frac{{{x^3}}}{{x - 1}}} }}.{\left( {\frac{{{x^3}}}{{x - 1}}} \right)^/}\)

Ta có: \({\left( {\frac{{{x^3}}}{{x - 1}}} \right)^/} = \frac{{{{\left( {{x^3}} \right)}^/}\left( {x - 1} \right) - {{\left( {x - 1} \right)}^/}.{x^3}}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{3{x^2}\left( {x - 1} \right) - {x^3}}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} \right)}^2}}}\)

Vậy \(y' = \frac{1}{{2\sqrt {\frac{{{x^3}}}{{x - 1}}} }}.\frac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} \right)}^2}}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP