Câu hỏi:
05/12/2022 212Tính đạo hàm của hàm số \(y = \sqrt {{{\left( {x - 2} \right)}^3}} .\)
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án D
Đầu tiên áp dụng \({\left( {\sqrt u } \right)^/}\) với \(u = {\left( {x - 2} \right)^3}\)
\(y' = \frac{1}{{2\sqrt {{{\left( {x - 2} \right)}^3}} }}.{\left( {{{\left( {x - 2} \right)}^3}} \right)^/} = \frac{1}{{2\sqrt {{{\left( {x - 2} \right)}^3}} }}.3.{\left( {x - 2} \right)^2} = \frac{{3\left( {x - 2} \right)}}{{2\sqrt {x - 2} }}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
về câu hỏi!