Câu hỏi:

05/12/2022 310 Lưu

Tính đạo hàm của hàm số \(y = {\left( {1 + \sqrt {1 - 2x} } \right)^3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án D

Bước đầu tiên áp dụng \({\left( {{u^\alpha }} \right)^/}\)với \(u = 1 + \sqrt {1 - 2x} \)

\(y' = 3{\left( {1 + \sqrt {1 - 2x} } \right)^2}.{\left( {1 + \sqrt {1 - 2x} } \right)^/} = 3{\left( {1 + \sqrt {1 - 2x} } \right)^2}.\frac{{{{\left( {1 - 2x} \right)}^/}}}{{2\sqrt {1 - 2x} }} = \frac{{ - 6{{\left( {1 + \sqrt {1 - 2x} } \right)}^2}}}{{2\sqrt {1 - 2x} }}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP