Câu hỏi:

05/12/2022 4,553

Cho hàm số \[y = f(x) = \left\{ \begin{array}{l}{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\2x - 1\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,\,x < 1\end{array} \right.\]. Hãy chọn câu sai:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải::

Chọn A

Ta có: \[f(1) = 1\]

\[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} {x^2} = 1\]\[\mathop {\lim }\limits_{x \to {1^ - }} = \mathop {\lim }\limits_{x \to {1^ - }} (2x - 1) = 1\].

Vậy hàm số liên tục tại \[{x_0} = 1\]. C đúng.

Ta có: \[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 2\]

\[\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{(2x - 1) - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2\left( {x - 1} \right)}}{{x - 1}} = 2\]

Vậy hàm số có đạo hàm tại \[{x_0} = 1\]\[ \Rightarrow y' = - 2\sin 2x \Rightarrow y'' = - 4\cos 2x \Rightarrow y''\left( 0 \right) = - 4\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn A

Cách 1: Áp dụng công thức \[{\left( {{u^n}} \right)^\prime }\]

Ta có \(y' = 2.\left( {{x^3} - 2{x^2}} \right).{\left( {{x^3} - 2{x^2}} \right)^\prime } = 2\left( {{x^3} - 2{x^2}} \right).\left( {3{x^2} - 4x} \right)\)

\( = 6{x^5} - 8{x^4} - 12{x^4} + 16{x^3} = 6{x^5} - 20{x^4} + 16{x^3}\)

Cách 2 : Khai triển hằng đẳng thức :

Ta có: \[y = {\left( {{x^3} - 2{x^2}} \right)^2} = {x^6} - 4{x^5} + 4{x^4}\] \[ \Rightarrow y' = 6{x^5} - 20{x^4} + 16{x^3}\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP