Câu hỏi:

05/12/2022 4,703 Lưu

Cho hàm số \[y = f(x) = \left\{ \begin{array}{l}{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\2x - 1\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,\,x < 1\end{array} \right.\]. Hãy chọn câu sai:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải::

Chọn A

Ta có: \[f(1) = 1\]

\[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} {x^2} = 1\]\[\mathop {\lim }\limits_{x \to {1^ - }} = \mathop {\lim }\limits_{x \to {1^ - }} (2x - 1) = 1\].

Vậy hàm số liên tục tại \[{x_0} = 1\]. C đúng.

Ta có: \[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 2\]

\[\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{(2x - 1) - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2\left( {x - 1} \right)}}{{x - 1}} = 2\]

Vậy hàm số có đạo hàm tại \[{x_0} = 1\]\[ \Rightarrow y' = - 2\sin 2x \Rightarrow y'' = - 4\cos 2x \Rightarrow y''\left( 0 \right) = - 4\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP