Câu hỏi:

05/12/2022 4,332

Cho hàm số \[y = f(x) = \left\{ \begin{array}{l}{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\2x - 1\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,\,x < 1\end{array} \right.\]. Hãy chọn câu sai:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải::

Chọn A

Ta có: \[f(1) = 1\]

\[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} {x^2} = 1\]\[\mathop {\lim }\limits_{x \to {1^ - }} = \mathop {\lim }\limits_{x \to {1^ - }} (2x - 1) = 1\].

Vậy hàm số liên tục tại \[{x_0} = 1\]. C đúng.

Ta có: \[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 2\]

\[\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{(2x - 1) - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2\left( {x - 1} \right)}}{{x - 1}} = 2\]

Vậy hàm số có đạo hàm tại \[{x_0} = 1\]\[ \Rightarrow y' = - 2\sin 2x \Rightarrow y'' = - 4\cos 2x \Rightarrow y''\left( 0 \right) = - 4\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đạo hàm của hàm số Media VietJack là:

Xem đáp án » 02/12/2022 15,518

Câu 2:

Đạo hàm của \[y = {\left( {{x^3} - 2{x^2}} \right)^2}\]bằng :

Xem đáp án » 02/12/2022 13,304

Câu 3:

Tính đạo hàm của hàm số sau:  \(y = \frac{{ax + b}}{{cx + d}}{\rm{, }}ac \ne 0\)

Xem đáp án » 02/12/2022 10,965

Câu 4:

Đạo hàm của hàm số\[y = \sqrt {{x^2} - 4{x^3}} \] là :

Xem đáp án » 04/12/2022 10,217

Câu 5:

Đạo hàm cấp một của hàm số \(y = {\left( {1 - {x^3}} \right)^5}\) là:

Xem đáp án » 01/12/2022 8,380

Câu 6:

Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] \[y'\] bằng.

Xem đáp án » 02/12/2022 8,102

Câu 7:

Cho hàm số \(y = \frac{{{x^2} + 2x - 3}}{{x + 2}}\). Đạo hàm \({y^\prime }\) của hàm số là

Xem đáp án » 03/12/2022 7,736
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua