Câu hỏi:

05/12/2022 402 Lưu

Tìm \(a,b\) để các hàm số sau có đạo hàm trên \(\mathbb{R}\). \(f(x) = \left\{ \begin{array}{l}{x^2} - x + 1{\rm{   }}\,\,\,\,{\rm{khi }}x \le 1\\ - {x^2} + ax + b{\rm{ khi }}x > 1\end{array} \right.\)

                    

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải::

Chọn D

Với \(x \ne 1\) thì hàm số luôn có đạo hàm

Do đó hàm số có đạo hàm trên \(\mathbb{R}\)\( \Leftrightarrow \) hàm số có đạo hàm tại \(x = 1\).

Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 1;{\rm{ }}\mathop {\lim }\limits_{x \to {1^ + }} f(x) = a + b - 1\)

Hàm số liên tục trên \(\mathbb{R}\)\( \Leftrightarrow a + b - 1 = 1 \Leftrightarrow a + b = 2\)

Khi đó: \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f(x) - f(1)}}{{x - 1}} = 1;{\rm{ }}\)

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - {x^2} + ax + 1 - a}}{{x - 1}} = a - 2\)

Nên hàm số có đạo hàm trên \(\mathbb{R}\) thì \(\left\{ \begin{array}{l}a + b = 2\\a - 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 1\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Chọn D.

Media VietJack

Câu 2

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP