Câu hỏi:
05/12/2022 380
Tìm \(a,b\) để các hàm số sau có đạo hàm trên \(\mathbb{R}\). \(f(x) = \left\{ \begin{array}{l}{x^2} - x + 1{\rm{ }}\,\,\,\,{\rm{khi }}x \le 1\\ - {x^2} + ax + b{\rm{ khi }}x > 1\end{array} \right.\)
Tìm \(a,b\) để các hàm số sau có đạo hàm trên \(\mathbb{R}\). \(f(x) = \left\{ \begin{array}{l}{x^2} - x + 1{\rm{ }}\,\,\,\,{\rm{khi }}x \le 1\\ - {x^2} + ax + b{\rm{ khi }}x > 1\end{array} \right.\)
Quảng cáo
Trả lời:
Hướng dẫn giải::
Chọn D
Với \(x \ne 1\) thì hàm số luôn có đạo hàm
Do đó hàm số có đạo hàm trên \(\mathbb{R}\)\( \Leftrightarrow \) hàm số có đạo hàm tại \(x = 1\).
Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 1;{\rm{ }}\mathop {\lim }\limits_{x \to {1^ + }} f(x) = a + b - 1\)
Hàm số liên tục trên \(\mathbb{R}\)\( \Leftrightarrow a + b - 1 = 1 \Leftrightarrow a + b = 2\)
Khi đó: \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f(x) - f(1)}}{{x - 1}} = 1;{\rm{ }}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - {x^2} + ax + 1 - a}}{{x - 1}} = a - 2\)
Nên hàm số có đạo hàm trên \(\mathbb{R}\) thì \(\left\{ \begin{array}{l}a + b = 2\\a - 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 1\end{array} \right.\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Chọn D.
Lời giải
Hướng dẫn giải:
Chọn A
Cách 1: Áp dụng công thức \[{\left( {{u^n}} \right)^\prime }\]
Ta có \(y' = 2.\left( {{x^3} - 2{x^2}} \right).{\left( {{x^3} - 2{x^2}} \right)^\prime } = 2\left( {{x^3} - 2{x^2}} \right).\left( {3{x^2} - 4x} \right)\)
\( = 6{x^5} - 8{x^4} - 12{x^4} + 16{x^3} = 6{x^5} - 20{x^4} + 16{x^3}\)
Cách 2 : Khai triển hằng đẳng thức :
Ta có: \[y = {\left( {{x^3} - 2{x^2}} \right)^2} = {x^6} - 4{x^5} + 4{x^4}\] \[ \Rightarrow y' = 6{x^5} - 20{x^4} + 16{x^3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.