Câu hỏi:
05/12/2022 296Tìm \(a,b\) để các hàm số sau có đạo hàm trên \(\mathbb{R}\). \(f(x) = \left\{ \begin{array}{l}{x^2} - x + 1{\rm{ }}\,\,\,\,{\rm{khi }}x \le 1\\ - {x^2} + ax + b{\rm{ khi }}x > 1\end{array} \right.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải::
Chọn D
Với \(x \ne 1\) thì hàm số luôn có đạo hàm
Do đó hàm số có đạo hàm trên \(\mathbb{R}\)\( \Leftrightarrow \) hàm số có đạo hàm tại \(x = 1\).
Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 1;{\rm{ }}\mathop {\lim }\limits_{x \to {1^ + }} f(x) = a + b - 1\)
Hàm số liên tục trên \(\mathbb{R}\)\( \Leftrightarrow a + b - 1 = 1 \Leftrightarrow a + b = 2\)
Khi đó: \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f(x) - f(1)}}{{x - 1}} = 1;{\rm{ }}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - {x^2} + ax + 1 - a}}{{x - 1}} = a - 2\)
Nên hàm số có đạo hàm trên \(\mathbb{R}\) thì \(\left\{ \begin{array}{l}a + b = 2\\a - 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 1\end{array} \right.\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Đạo hàm của hàm số \(y = {(7x - 5)^4}\) bằng biểu thức nào sau đây
Câu 6:
Đạo hàm của hàm số \[y = {\left( {3{x^2} - 1} \right)^2}\] là \[y'\] bằng.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
75 câu trắc nghiệm Giới hạn cơ bản (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
về câu hỏi!