Câu hỏi:

05/12/2022 2,533 Lưu

\(f'(x) > 0\) với \(f(x) = x + \sqrt {4 - {x^2}} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

TXĐ: \(D = \left[ { - 2;2} \right]\)

Ta có: \(f'(x) = 1 - \frac{x}{{\sqrt {4 - {x^2}} }} \Rightarrow f'(x) > 0 \Leftrightarrow \sqrt {4 - {x^2}} > x\)

\( \Leftrightarrow \left[ \begin{array}{l} - 2 \le x < 0\\\left\{ \begin{array}{l}x \ge 0\\4 - {x^2} > {x^2}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2 \le x < 0\\0 \le x < \sqrt 2 \end{array} \right. \Leftrightarrow - 2 \le x < \sqrt 2 \).

Đáp án: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án A

\(\begin{array}{l}y = 3{x^3} + {x^2} + 1 \Rightarrow y' = 9{x^2} + 2x\\y' \le 0 \Rightarrow - \frac{2}{9} \le x \le 0\end{array}\)

Lời giải

Hướng dẫn giải:

Chọn C.

Ta có Media VietJack

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP