Câu hỏi:

09/12/2022 3,308

Cho hình chóp S.ABC có đáy ABC là tam giác đều, SAABC. Gọi (P) là mặt phẳng qua B và vuông góc với SC. Thiết diện của (P) và hình chóp S.ABC là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Cho hình chóp S.ABC có đáy ABC là tam giác đều, SA vuông góc mp ABC. Gọi (P) là mặt phẳng qua B và vuông góc với SC. Thiết diện của (P) và hình chóp S.ABC là: (ảnh 1)

Gọi I là trung điểm của AC, kẻ IHSC

Ta có BIAC,BISABISC

Do đó BIAC,BISABISC hay thiết diện là tam giác BIH

BISAC nên BIIH hay thiết diện là tam giác vuông.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 1)

Ta có Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 2)

Tương tự Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 3)suy ra IS = ID = IC nên I thuộc trục đường tròn ngoại tiếp tam giác SCD

Mặt khác Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 4)

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 5) vuông tại D, lại có K là trung điểm của SC nên K là tâm đường tròn ngoại tiếp tam giác SCD, do đó Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 6)

Ta có Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 7)

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK. (ảnh 8)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay