Câu hỏi:

13/12/2022 176

Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Tính AB theo a và x?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Tính AB theo a và x? (ảnh 1)

Gọi H là trung điểm của CD. Vì tam giác ACD cân tại A và tam giác BCD cân tại B nên Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Tính AB theo a và x? (ảnh 2)

Ta có .

Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Tính AB theo a và x? (ảnh 3)
Tam giác AHB vuông tại H nên
Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Tính AB theo a và x? (ảnh 4)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lăng trụ tứ giác đều ABCD.A'B'C'D' có ACC'A' là hình vuông, cạnh bằng a. Cạnh đáy của hình lăng trụ bằng:

Xem đáp án » 13/12/2022 5,163

Câu 2:

Cho hình chóp cụt đều ABC. A'B'C' với đáy lớn ABC có cạnh bằng a. Đáy nhỏ A'B'C' có cạnh bằng a2, chiều cao OO'=a2. Khẳng định nào sau đây sai?

Xem đáp án » 13/12/2022 3,138

Câu 3:

Cho ba tia Ox, Oy, Oz vuông góc nhau từng đôi một. Trên Ox, Oy, Oz lần lượt lấy các điểm A, B, C sao cho OA = OB = OC = a. Khẳng định nào sau đây sai?

Xem đáp án » 13/12/2022 2,487

Câu 4:

Cho hình chóp cụt tứ giác đều ABCD.A'B'C'D' cạnh của đáy nhỏ ABCD bằng a3 và cạnh của đáy lớn A'B'C'D' bằng a. Góc giữa cạnh bên và mặt đáy bằng 60o. Tính chiều cao OO' của hình chóp cụt đã cho.

Xem đáp án » 13/12/2022 2,381

Câu 5:

Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng 2a3 và cạnh bên bằng 2a. Gọi G  và G'  lần lượt là trọng tâm của hai đáy ABC  và A'B'C' . Khẳng định nào sau đây đúng khi nói về AA'G'G ?

Xem đáp án » 13/12/2022 2,254

Câu 6:

Cho hai tam giác ACD và BCD  nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Gọi I, J  lần lượt là trung điểm của AB  và CD . Tính IJ theo a và x ?

Xem đáp án » 13/12/2022 1,730

Câu 7:

Cho hình lăng trụ lục giác đều ABCDEF.A'B'C'D'E'F' có cạnh bên bằng a và ADD'A' là hình vuông. Cạnh đáy của lăng trụ bằng:

Xem đáp án » 13/12/2022 1,693

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn