Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].
Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.
Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].
Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.
Quảng cáo
Trả lời:
Phương pháp:
Sử dụng công thức: \[{u_n} = {u_1} + \left( {n - 1} \right)d\].
Cách giải:
Ta có: \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\u_{31}^2 + {\left( {11 - {u_{31}}} \right)^2} = 101\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 121 = 101\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 20 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\{u_{31}} = 2,{u_{31}} = 10\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{u_{31}} = 2,{u_{34}} = 9\\{u_{31}} = 10,{u_{34}} = 1\end{array} \right.\]
Mà dãy \[\left( {{u_n}} \right)\] tăng nên \[{u_{34}} > {u_{31}}\], do đó \[{u_{31}} = 2,{\rm{ }}{u_{34}} = 9\]
\[ \Rightarrow \left\{ \begin{array}{l}{u_1} + 30d = 2\\{u_1} + 33d = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = \frac{7}{3}\\{u_1} = - 68\end{array} \right.\]
Số hạng tổng quát \[{u_n} = - 68 + \frac{7}{3}\left( {n - 1} \right)\].
Vậy \[{u_1} = - 68,{\rm{ }}d = \frac{7}{3},{\rm{ }}{u_n} = - 68 + \frac{7}{3}\left( {n - 1} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
- Tính số phần tử không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố \[A\] đã cho.
- Tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].
Cách giải:
Chọn 4 trong 16 quả cầu, \[n\left( \Omega \right) = C_{16}^4 = 1820\].
Gọi \[A\] là biến cố: “Có đúng 1 quả cầu đỏ và không quá 2 quả cầu vàng”
TH1: Chọn được 1 quả cầu đỏ, 2 quả cầu vàng, 1 quả cầu xanh có \[C_4^1.C_7^2.C_5^1 = 420\] cách.
TH2: Chọn được 1 quả cầu đỏ, 1 quả cầu vàng, 2 quả cầu xanh có \[C_4^1.C_7^1.C_5^2 = 280\] cách.
TH3: Chọn được 1 quả cầu đỏ, 0 quả cầu vàng, 3 quả cầu xanh có \[C_4^1.C_7^0.C_5^3 = 40\] cách.
Do đó \[n\left( A \right) = 420 + 280 + 40 = 740\].
Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{740}}{{1820}} = \frac{{37}}{{91}}\].
Lời giải
Phương pháp:
a) Sử dụng định lí ba giao tuyến song song: \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \alpha \right) \cap \left( \gamma \right) = {d_3}\\{d_1}//{d_2}\end{array} \right. \Rightarrow {d_3}//{d_1}//{d_2}\].
Cách giải:

1) Tìm giao tuyến của mặt phẳng \[\left( {SAD} \right)\] và mặt phẳng \[\left( {GBC} \right)\]. Tìm giao điểm \[H\] của đường thẳng \[BC\] với mặt phẳng \[\left( {SGM} \right)\].
Dễ thấy \[G \in \left( {GBC} \right) \cap \left( {SAD} \right)\].
Xét các mặt phẳng: \[\left( {GBC} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {ABCD} \right)\] có:
\[\left\{ \begin{array}{l}\left( {GBC} \right) \cap \left( {SAD} \right) = Gx\\\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\\\left( {ABCD} \right) \cap \left( {GBC} \right) = BC\\BC//AD\end{array} \right. \Rightarrow Gx//AB//CD\]
Vậy \[\left( {SAD} \right) \cap \left( {GBC} \right) = Gx\] là đường thẳng đi qua \[G\] và song song \[AD\].
Gọi \[I\] là trung điểm \[AD\], khi đó \[\left( {SGM} \right) \equiv \left( {SIM} \right)\].
Trong \[\left( {ABCD} \right)\], gọi \[H = IM \cap BC \Rightarrow \left\{ \begin{array}{l}H \in IM \subset \left( {SIM} \right)\\H \in BC\end{array} \right. \Rightarrow H = BC \cap \left( {SMG} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.