Câu hỏi:
02/02/2023 498Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].
Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
Sử dụng công thức: \[{u_n} = {u_1} + \left( {n - 1} \right)d\].
Cách giải:
Ta có: \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\u_{31}^2 + {\left( {11 - {u_{31}}} \right)^2} = 101\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 121 = 101\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 20 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\{u_{31}} = 2,{u_{31}} = 10\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{u_{31}} = 2,{u_{34}} = 9\\{u_{31}} = 10,{u_{34}} = 1\end{array} \right.\]
Mà dãy \[\left( {{u_n}} \right)\] tăng nên \[{u_{34}} > {u_{31}}\], do đó \[{u_{31}} = 2,{\rm{ }}{u_{34}} = 9\]
\[ \Rightarrow \left\{ \begin{array}{l}{u_1} + 30d = 2\\{u_1} + 33d = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = \frac{7}{3}\\{u_1} = - 68\end{array} \right.\]
Số hạng tổng quát \[{u_n} = - 68 + \frac{7}{3}\left( {n - 1} \right)\].
Vậy \[{u_1} = - 68,{\rm{ }}d = \frac{7}{3},{\rm{ }}{u_n} = - 68 + \frac{7}{3}\left( {n - 1} \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!