Câu hỏi:

23/02/2023 1,077

Cho hàm số \(y = f\left( x \right) = - {x^3} + 3x - 2\). Các giá trị cực đại và cực tiểu của hàm số là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Giải phương trình \(y' = 0\) tìm các điểm cực trị của hàm số, sau đó tính các giá trị cực trị.

Cách giải:

\(y = f\left( x \right) = - {x^3} + 3x - 2\)

\( \Rightarrow y = - 3{x^2} + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = 0\\x = - 1 \Rightarrow y = - 4\end{array} \right.\)

Do \(a = - 1 < 0\) và nên

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)

Câu 2

Lời giải

Đáp án B

Phương pháp:

\(y = f\left( x \right).g\left( x \right) \Rightarrow y' = f'\left( x \right).g\left( x \right) + f\left( x \right).g'\left( x \right)\)

Cách giải:

\(y = x.\ln x \Rightarrow y = 1.\ln x + x.\frac{1}{x} = \ln x + 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP